• Acta Optica Sinica
  • Vol. 37, Issue 3, 318010 (2017)
Pan Leiting1、2、*, Hu Fen1, Zhang Xinzheng1、3, and Xu Jingjun1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0318010 Cite this Article Set citation alerts
    Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Multicolor Single-Molecule Localization Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318010 Copy Citation Text show less
    References

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

    [2] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[C]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210.

    [3] D′Este E, Kamin D, Gttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 2015, 10(8): 1246-1251.

    [4] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

    [5] Gustafsson M G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[C]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

    [6] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

    [7] Shtengel G, Galbraith J A, Galbraith C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[C]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3125-3130.

    [8] Shroff H, White H, Betzig E. Photoactivated localization microscopy (PALM) of adhesion complexes[J]. Current Protocols in Cell Biology, 2008, 4: 4-21.

    [9] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796.

    [10] Heilemann M, van de Linde S, Schüttpelz M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie (International Edition), 2008, 47(33): 6172-6176.

    [11] Zhuang X. Nano-imaging with STORM[J]. Nature Photonics, 2009, 3(7): 365-367.

    [12] Xu K, Shim S H, Zhuang X. Super-resolution imaging through stochastic switching and localization of single molecules: An overview[M]. Far-field Optical Nanoscopy, Berlin: Springer, 2015: 27-64.

    [13] Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618.

    [14] Xia Peng, Dou Zhen, Yao Xuebiao. Progress of super-resolution microscopy[J]. Chemistry of Life, 2015, 35(3): 430-437.

    [15] Li D, Shao L, Chen B C, et al. Advanced imaging. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. Science, 2015, 349(6251): aab3500.

    [16] Bhme M A, Beis C, Reddy-Alla S, et al. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel-vesicle coupling[J]. Nature Neuroscience, 2016, 19(10): 1311-1320.

    [17] French J B, Jones S A, Deng H, et al. Spatial colocalization and functional link of purinosomes with mitochondria[J]. Science, 2016, 351(6274): 733-737.

    [18] Huang F, Sirinakis G, Allgeyer E S, et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 2016, 166(4): 1028-1040.

    [19] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actincytoskeleton[J]. Nature Methods, 2012, 9(2): 185-188.

    [20] Betzig E. Proposed method for molecular optical imaging[J]. Optics Letters, 1995, 20(3): 237-239.

    [21] Dickson R M, Cubitt A B, Tsien R Y, et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358.

    [22] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.

    [23] Shroff H, Galbraith C G, Galbraith J A, et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[C]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51): 20308-20313.

    [24] Subach F V, Patterson G H, Manley S, et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy[J]. Nature Methods, 2009, 6(2): 153-159.

    [25] Dempsey G T, Vaughan J C, Chen K H, et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging[J]. Nature Methods, 2011, 8(12): 1027-1036.

    [26] Jones S A, Shim S H, He J, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6): 499-508.

    [27] Leterrier C, Potier J, Caillol G, et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold[J]. Cell Reports, 2015, 13(12): 2781-2793.

    [28] Lippincott-Schwartz J, Patterson G H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging[J]. Trends in Cell Biology, 2009, 19(11): 555-565.

    [29] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753.

    [30] Bates M, Dempsey G T, Chen K H, et al. Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection[J]. Chem Phys Chem, 2012, 13(1): 99-107.

    [31] Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7): 743-748.

    [32] Dani A, Huang B, Bergan J, et al. Superresolution imaging of chemical synapses in the brain[J]. Neuron, 2010, 68(5): 843-856.

    [33] Tam J, Cordier G A, Borbely J S, et al. Cross-talk-free multi-color STORM imaging using a single fluorophore[J]. PLoS One, 2014, 9(7): e101772.

    [34] Bossi M. Flling J, Belov V N, et al. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species[J]. Nano Letters, 2008, 8(8): 2463-2468.

    [35] Kim D, Curthoys N M, Parent M T, et al. Bleed-through correction for rendering and correlation analysis in multi-colour localization microscopy[J]. Journal of Optics, 2013, 15(9): 094011.

    [36] Baddeley D, Crossman D, Rossberger S, et al. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues[J]. PLoS One, 2011, 6(5): e20645.

    [37] Lampe A, Haucke V, Sigrist S J, et al. Multi-colour direct STORM with red emitting carbocyanines[J]. Biology of the Cell, 2012, 104(4): 229-237.

    [38] Gunewardene M S, Subach F V, Gould T J, et al. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells[J]. Biophysical Journal, 2011, 101(6): 1522-1528.

    [39] Testa I, Wurm C A, Medda R, et al. Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength[J]. Biophysical Journal, 2010, 99(8): 2686-2694.

    [40] Zhang Z, Kenny S J, Hauser M, et al. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy[J]. Nature Methods, 2015, 12(10): 935-938.

    [41] Mlodzianoski M J, Curthoys N M, Gunewardene M S, et al. Super-resolution imaging of molecular emission spectra and single molecule spectral fluctuations[J]. PLoS One, 2016, 11(3): e0147506.

    [42] Dong B, Almassalha L, Urban B E, et al. Super-resolution spectroscopic microscopy via photon localization[J]. Nature Communications, 2016, 7: 12290.

    [43] Shechtman Y, Weiss L E, Backer A S, et al. Multicolour localization microscopy by point-spread-function engineering[J]. Nature Photonics, 2016, 10: 590-595.

    [44] Pavani S R P, Thompson M A, Biteen J S, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[C]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 2995-2999.

    [45] Gahlmann A, Ptacin J L, Grover G, et al. Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions[J]. Nano Letters, 2013, 13(3): 987-993.

    [46] Shechtman Y, Weiss L E, Backer A S, et al. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions[J]. Nano Letters, 2015, 15(6): 4194-4199.

    [47] Allen J R, Ross S T, Davidson M W. Sample preparation for single molecule localization microscopy[J]. Physical Chemistry Chemical Physics, 2013, 15(43): 18771-18783.

    [48] Whelan D R, Bell T D. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters[J]. Scientific Reports, 2015, 5: 7924.

    CLP Journals

    [1] Yang Jianyu, Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Stochastic Optical Reconstruction Microscopy and its application[J]. Infrared and Laser Engineering, 2017, 46(11): 1103008

    Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Multicolor Single-Molecule Localization Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318010
    Download Citation