• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1700003 (2021)
Yilan Chen1、2 and Xiaolei Zhu1、2、*
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.1700003 Cite this Article Set citation alerts
    Yilan Chen, Xiaolei Zhu. Burst-Mode Laser Technology with High Repetition Frequency and High Pulse Energy Output[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700003 Copy Citation Text show less
    References

    [1] Shi X C, Chen W B, Hou X et al. Application of all solid state laser in space[J]. Infrared and Laser Engineering, 34, 127-131(2005).

    [2] Liu X X, Li Y L. State-of-art of foreign military solid state laser[J]. Laser & Infrared, 30, 7-10, 41(2000).

    [3] Gabet K N, Patton R A, Jiang N et al. High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system[J]. Applied Physics B, 106, 569-575(2012).

    [4] Kaminski C F, Hult J, Aldén M et al. High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame[J]. Applied Physics B, 68, 757-760(1999).

    [5] Lemmerz C, Lux O, Reitebuch O et al. Frequency and timing stability of an airborne injection-seeded Nd∶YAG laser system for direct-detection wind lidar[J]. Applied Optics, 56, 9057-9068(2017).

    [6] Liu D, Yang Y Y, Zhou Y D et al. High spectral resolution lidar for atmosphere remote sensing: a review[J]. Infrared and Laser Engineering, 44, 2535-2546(2015).

    [7] Gaspard S, Forster M, Huber C et al. Femtosecond laser processing of biopolymers at high repetition rate[J]. Physical Chemistry Chemical Physics, 10, 6174-6181(2008).

    [8] Jaeggi B, Cangueiro L, Bruneel D et al. Micromachining using pulse bursts: influence of the pulse duration and the number of pulses in the burst on the specific removal rate[J]. Proceedings of SPIE, 10519, 1051905(2018).

    [9] Liu T, Wang J, Petrov G I et al. Photoacoustic generation by multiple picosecond pulse excitation[J]. Medical Physics, 37, 1518-1521(2010).

    [10] Fleury J, Lanini M, Pose C et al. Wide band-pass FSS with reduced periodicity for energy efficient windows at higher frequencies[J]. Applied Physics A, 126, 417(2020).

    [11] Thurow B, Jiang N B, Samimy M et al. Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics[J]. Applied Optics, 43, 5064-5073(2004).

    [12] Li X D, Mei F, Yan R P et al. Review of burst-mode lasers for high-speed PLIF imaging diagnostics[J]. Optics and Precision Engineering, 27, 2116-2126(2019).

    [13] Li X D, Zhou Y P, Yan R P et al. Study on laser for applications in high-speed planar laser induced fluorescence[J]. Infrared and Laser Engineering, 46, 1205001(2017).

    [14] Cosentino A, Mondello A, Sapia A et al. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications[J]. Proceedings of SPIE, 10568, 1056817(2017).

    [15] Ni X X, Hu K. Multi-pulse train cross-correlation method in remote laser ranging[J]. Acta Optica Sinica, 32, 1112005(2012).

    [16] Zhong S Y, Li S S. Study of multi-pulsed laser ranging technology[J]. Laser & Infrared, 36, 797-799(2006).

    [17] Gattass R R, Cerami L R, Mazur E et al. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates[J]. Optics Express, 14, 5279-5284(2006).

    [18] Hu W Q, Shin Y C, King G et al. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate[J]. Applied Physics A, 98, 407-415(2009).

    [19] Zhu X N, Bao W X. Fundamentals of ultrashort pulse laser and its applications[J]. Chinese Journal of Lasers, 46, 1200001(2019).

    [20] Zhu S Q, Jiang W, Liu Y M et al. Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system[J]. Journal of Russian Laser Research, 36, 377-384(2015).

    [21] Hult J, Richter M, Nygren J et al. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines[J]. Applied Optics, 41, 5002-5014(2002).

    [22] Wu P P, Miles R B. High-energy pulse-burst laser system for megahertz-rate flow visualization[J]. Optics Letters, 25, 1639-1641(2000).

    [23] Thurow B S, Satija A, Lynch K et al. Third-generation megahertz-rate pulse burst laser system[J]. Applied Optics, 48, 2086-2093(2009).

    [24] Wu P F, Lempert W L, Miles R B et al. Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction[J]. AIAA Journal, 38, 672-679(2000).

    [25] Slipchenko M N, Miller J D, Roy S et al. Quasi-continuous burst-mode laser for high-speed planar imaging[J]. Optics Letters, 37, 1346-1348(2012).

    [26] Slipchenko M N, Miller J D, Roy S et al. All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging[J]. Optics Express, 21, 681-689(2013).

    [27] Slipchenko M N, Miller J D, Roy S et al. 100 kHz, 100 ms, 400 J burst-mode laser with dual-wavelength diode-pumped amplifiers[J]. Optics Letters, 39, 4735-4738(2014).

    [28] Jiang N B, Webster M C, Lempert W R et al. Advances in generation of high-repetition-rate burst mode laser output[J]. Applied Optics, 48, B23-B31(2009).

    [29] Korner J, Reiter J, Hein J et al. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering[J]. Applied Sciences, 5, 1790-1802(2015).

    [30] Smyser M E, Rahman K A, Slipchenko M N et al. Compact burst-mode Nd∶YAG laser for kHz-MHz bandwidth velocity and species measurements[J]. Optics Letters, 43, 735-738(2018).

    [31] Huntley J M. High-speed laser speckle photography. Part 1: repetitively Q-switched ruby laser light source[J]. Optical Engineering, 33, 1692-1699(1994).

    [32] Grace J M, Nebolsine P E, Goldey C L et al. Repetitively pulsed ruby lasers as light sources for high-speed photography[J]. Optical Engineering, 37, 2205-2212(1998).

    [33] Koyata Y, Yamamoto S, Hirano Y et al. Burst-mode Q-switching operation of a Nd∶‍YAG rod laser[J]. Proceedings of SPIE, 3889, 224-230(2000).

    [34] Furuta K, Kojima T, Fujikawa S et al. Diode-pumped 1 kW Q-switched Nd∶‍YAG rod laser with high peak power and high beam quality[J]. Applied Optics, 44, 4119-4122(2005).

    [35] Hartog D J D, Ambuel J R, Borchardt M T et al. Pulse-burst laser systems for fast Thomson scattering[J]. The Review of Scientific Instruments, 81, 10D513(2010).

    [36] Young W C, Hartog D J D. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering[J]. The Review of Scientific Instruments, 85, 11D808(2014).

    [37] Guo J L, Xia Y, Li J Z et al. Study on pulse-series of electro-optical Q-switched Nd∶YAG laser[J]. Laser & Infrared, 12, 1130-1132(2006).

    [38] Mi G J, Yang W S, Zhu X B et al. High repetition frequency and big energy mode-locking laser technology[J]. Chinese Journal of Lasers, 36, 1822-1825(2009).

    [39] Liu J W, Gao C Q, Wang L et al. Study on multi-pulse of high power electro-optical Q-switched Nd∶YAG laser[J]. Optical Technique, 36, 791-794(2010).

    [40] Liu J W, Gao C Q, Gao M W et al. Eye-safe optical parametric oscillator with pulse string output[J]. Transactions of Beijing Institute of Technology, 30, 1444-1447(2010).

    [41] Zhao H, Yan X J, Deng M F et al. All solid-state large energy Nd∶YAG laser with electro-optical Q-switched pulse sequence[J]. Laser & Infrared, 46, 819-822(2016).

    [42] Pan H, Yan R P, Fa X et al. High-peak-power, high-repetition-rate LD end-pumped Nd∶YVO4 burst mode laser[J]. Optical Review, 23, 386-390(2016).

    [43] Li X D, Han X H, Yan R P et al. Stable 500 kHz, 1 ms, 40 mJ pulse-burst GdVO4/Nd∶GdVO4 laser oscillator[J]. Proceedings of SPIE, 10152, 101521E(2016).

    [44] Pan H, Yan R P, Li X D et al. LD-pumped acousto-optical Q-switched burst-mode Nd∶YAG laser[J]. Proceedings of SPIE, 9893, 98930X(2016).

    [45] Li X D, Zhou Y P, Yan R P et al. Investigation on LD-pumped acousto-optically Q-switched pulse burst 1064 nm laser[J]. Optik, 148, 167-171(2017).

    [46] Wu W T, Li X D, Mei F et al. 30 mJ, 1 kHz sub-nanosecond burst-mode Nd∶YAG laser MOPA system[J]. Optics Express, 27, 36129-36136(2019).

    [47] Li X D, Xu G C, Yan R P et al. A 2.2 J all-diode-pumped Nd∶YAG burst-mode laser at repetition rate of 10 kHz[J]. Proceedings of SPIE, 10964, 109645Y(2018).

    [48] Li H B, Dong Y, Wang P F et al. Passive Q-switch high power burst laser[J]. Laser & Infrared, 42, 762-765(2012).

    [49] Jiang W, Liu Y M, Chen W D et al. Composite Yb∶YAG/Cr4+∶YAG/YAG crystal passively Q-switched lasers at 1030 nm[J]. Applied Optics, 54, 1834-1838(2015).

    [50] Gorbachenya K N, Kisel V E, Yasukevich A S et al. Eye-safe 1.55 μm passively Q-switched Er, Yb∶GdAl3(BO3)4 diode-pumped laser[J]. Optics Letters, 41, 918-921(2016).

    [52] Li X D, Zhou Y P, Yan R P et al. A compact YAG/Nd∶YAG/Cr∶YAG passively Q-switched pulse burst laser pumped by 885 nm laser diode[J]. Journal of Russian Laser Research, 38, 387-391(2017).

    [53] Li X D, Zhou Y P, Yan R P et al. A compact pulse burst laser with YAG/Nd∶YAG/Cr4+∶YAG composite crystal[J]. Optik, 136, 107-111(2017).

    [54] Yan R P, Li X D, Zhou Y P et al. 2.5 MW, 2.0 ns MOPA burst mode laser at 86 kHz[J]. Optik, 185, 418-422(2019).

    Yilan Chen, Xiaolei Zhu. Burst-Mode Laser Technology with High Repetition Frequency and High Pulse Energy Output[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1700003
    Download Citation