• Photonics Research
  • Vol. 12, Issue 2, 292 (2024)
Yufeng Xiong1, Yunzheng Wang1、3、*, Chao Feng1, Yaolan Tian1, Liang Gao1, Jun-Lei Wang1、4、*, Zhuang Zhuo2, and Xian Zhao1
Author Affiliations
  • 1Center for Optics Research and Engineering, Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • 2School of Information Science and Engineering, Shandong University, Qingdao 266237, China
  • 3e-mail: yunzheng_wang@sdu.edu.cn
  • 4e-mail: junlei.wang@sdu.edu.cn
  • show less
    DOI: 10.1364/PRJ.505019 Cite this Article Set citation alerts
    Yufeng Xiong, Yunzheng Wang, Chao Feng, Yaolan Tian, Liang Gao, Jun-Lei Wang, Zhuang Zhuo, Xian Zhao. Electrically tunable phase-change metasurface for dynamic infrared thermal camouflage[J]. Photonics Research, 2024, 12(2): 292 Copy Citation Text show less
    References

    [1] R. Hu, W. Xi, Y. Liu. Thermal camouflaging metamaterials. Mater. Today, 45, 120-141(2021).

    [2] M. Pan, Y. Huang, Q. Li. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 69, 104449(2020).

    [3] M. Li, D. Liu, H. Cheng. Manipulating metals for adaptive thermal camouflage. Sci. Adv., 6, 10(2020).

    [4] P. Martyniuk, A. Rogalski. Van der Waals two-color infrared detection. Light Sci. Appl., 11, 27(2022).

    [5] L. Fu, Y. He, J. Zheng. TexSe1-x photodiode shortwave infrared detection and imaging. Adv. Mater., 35, 1522(2023).

    [6] A. Lenert, D. M. Bierman, Y. Nam. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol., 9, 126-130(2014).

    [7] H. R. Seyf, A. Henrya. Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power. Energy Environ. Sci., 9, 2654-2665(2016).

    [8] K. Chen, P. Santhanam, S. Fan. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery. Appl. Phys. Lett., 107, 091106(2015).

    [9] A. P. Raman, M. A. Anoma, L. Zhu. Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515, 540-544(2014).

    [10] M. Ono, K. Chen, W. Li. Self-adaptive radiative cooling based on phase change materials. Opt. Express, 26, A777-A787(2018).

    [11] S.-R. Wu, K.-L. Lai, C.-M. Wang. Passive temperature control based on a phase change metasurface. Sci. Rep., 8, 6(2018).

    [12] M. Chen, A. M. Morsy, M. L. Povinelli. Design of VO2-coated silicon microspheres for thermally regulating paint. Opt. Express, 27, 21787-21793(2019).

    [13] H. Zhu, Q. Li, C. Zheng. High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl., 9, 8(2020).

    [14] M. J. Moghimi, G. Lin, H. Jiang. Broadband and ultrathin infrared stealth sheets. Adv. Eng. Mater., 20, 1800038(2018).

    [15] L. Peng, D. Liu, H. Cheng. A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater., 6, 801006(2018).

    [16] T. Kim, J.-Y. Bae, N. Lee. Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv. Funct. Mater., 29, 807319(2019).

    [17] L. Li, M. Shi, X. Liu. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv. Funct. Mater., 31, 101381(2021).

    [18] T. Inoue, M. De Zoysa, T. Asano. Realization of dynamic thermal emission control. Nat. Mater., 13, 928-931(2014).

    [19] O. Salihoglu, H. B. Uzlu, O. Yakar. Graphene-based adaptive thermal camouflage. Nano Lett., 18, 4541-4548(2018).

    [20] J. Mandal, M. X. Jia, A. Overvig. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule, 3, 3088-3099(2019).

    [21] J. Wu, Y. Sun, B. Wu. Extremely wide-angle nonreciprocal thermal emitters based on Weyl semimetals with dielectric grating structure. Case Stud. Therm. Eng., 40, 102566(2022).

    [22] P. Liu, L. Zhou, J. Tang. Spinning thermal radiation from twisted two different anisotropic materials. Opt. Express, 30, 32722-32730(2022).

    [23] X. Li, M. Luo, X. Jiang. Color camouflage, solar absorption, and infrared camouflage based on phase-change material in the visible-infrared band. Opt. Mater. Express, 12, 1251-1262(2022).

    [24] E. Buhara, A. Ghobadi, B. Khalichi. Mid-infrared adaptive thermal camouflage using a phase-change material coupled dielectric nanoantenna. J. Phys. D, 54, 265105(2021).

    [25] Y. Qu, Q. Li, L. Cai. Thermal camouflage based on the phase-changing material GST. Light Sci. Appl., 7, 26(2018).

    [26] P. Moitra, Y. Wang, X. Liang. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv. Mater., 35, 2205367(2023).

    [27] Y. Zhang, C. Fowler, J. Liang. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [28] C. Quan, S. Gu, J. Zou. Phase change metamaterial for tunable infrared stealth and camouflage. Opt. Express, 30, 43741-43751(2022).

    [29] Y. Kim, C. Kim, M. Lee. Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security. Laser Photon. Rev., 16, 2100545(2022).

    [30] Y. Qu, Q. Li, L. Cai. Polarization switching of thermal emissions based on plasmonic structures incorporating phase-changing material Ge2Sb2Te5. Opt. Mater. Express, 8, 2312-2320(2018).

    [31] Y. Qu, Q. Li, K. Du. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photon. Rev., 11, 1700091(2017).

    [32] Q. Kang, D. Li, K. Guo. Tunable thermal camouflage based on GST plasmonic metamaterial. Nanomaterials (Basel), 11, 260(2021).

    [33] L. T. Chew, W. Dong, L. Lu. Chalcogenide Active Photonics, Conference on Active Photonic Platforms IX. Proc. SPIE, 10345, 58-66(2017).

    [34] Z. Li, J. Lee, J. P. Reifenberg. In-plane thermal conduction and conductivity anisotropy in Ge2Sb2Te5 films for phase change memory. ASME International Mechanical Engineering Congress and Exposition, 651-658(2010).

    [35] M. Luo, X. Li, Z. Zhang. Tunable infrared detection, radiative cooling and infrared-laser compatible camouflage based on a multifunctional nanostructure with phase-change material. Nanomaterials, 12, 2261(2022).

    [36] N. V. Voshchinnikov, G. Videen, T. Henning. Effective medium theories for irregular fluffy structures: aggregation of small particles. Appl. Opt., 46, 4065-4072(2007).

    [37] C. H. Chu, M. L. Tseng, J. Chen. Active dielectric metasurface based on phase-change medium. Laser Photon. Rev., 10, 986-994(2016).

    [38] Y. G. Chen, T. S. Kao, B. Ng. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express, 21, 13691-13698(2013).

    [39] D. E. Aspnes. Local-field effects and effective-medium theory: a microscopic perspective. Am. J. Phys., 50, 704-709(1982).

    [40] J. C. Guo, F. R. Liu, W. Q. Li. Microstructure evolution of the crystallization of amorphous Ge2Sb2Te5 thin films induced by single picosecond pulsed laser. J. Non-Cryst. Solids, 498, 1-7(2018).

    [41] R. De Bastiani, E. Carria, S. Gibilisco. Crystallization of ion amorphized Ge2Sb2Te5 thin films in presence of cubic or hexagonal phase. J. Appl. Phys., 107, 113521(2010).

    [42] J. Siegel, W. Gawelda, D. Puerto. Amorphization dynamics of Ge2Sb2Te5 films upon nano-and femtosecond laser pulse irradiation. J. Appl. Phys., 103, 023516(2008).

    [43] Z. Sun, J. Zhou, Y. Pan. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge2Sb2Te5 phase-change memory material. Proc. Natl. Acad. Sci. USA, 108, 10410-10414(2011).

    [44] Y. Wang, J. Ning, L. Lu. A scheme for simulating multi-level phase change photonics materials. npj Comput. Mater., 7, 183(2021).

    [45] Y. Wang, J. Ning, L. Lu. Multiphysics GCA codes(2021).

    Yufeng Xiong, Yunzheng Wang, Chao Feng, Yaolan Tian, Liang Gao, Jun-Lei Wang, Zhuang Zhuo, Xian Zhao. Electrically tunable phase-change metasurface for dynamic infrared thermal camouflage[J]. Photonics Research, 2024, 12(2): 292
    Download Citation