[1] Shuryak E. What RHIC experiments and theory tell us about properties of quark-gluon plasma?[J]. Nuclear Physics A, 750, 64-83(2005).
[2] Niida T, Miake Y. Signatures of QGP at RHIC and the LHC[J]. AAPPS Bulletin, 31, 12(2021).
[3] Bazavov A, Brambilla N, Ding H T et al. Polyakov loop in 2+1 flavor QCD from low to high temperatures[J]. Physical Review D, 93, 114502(2016).
[4] Brodsky S J, Roberts C D, Shrock R et al. Confinement contains condensates[J]. Physical Review C, 85, 065202(2012).
[5] Masayuki A, Koichi Y. Chiral restoration at finite density and temperature[J]. Nuclear Physics A, 504, 668-684(1989).
[6] Ackermann K H, Adams N, Adler C et al. Elliptic flow in Au+Au collisions at sNN=130 GeV[J]. Physical Review Letters, 86, 402-407(2001).
[7] Aamodt K, Abelev B, Quintana A A et al. Elliptic flow of charged particles in Pb-Pb collisions at sNN= 2.76 TeV[J]. Physical Review Letters, 105, 252302(2010).
[8] Aamodt K, Abelev B, Quintana A A et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sNN=2.76 TeV[J]. Physical Review Letters, 107, 032301(2011).
[9] Eskola K J. Nearly perfect quark-gluon fluid[J]. Nature Physics, 15, 1111-1112(2019).
[10] Rebhan A, Steineder D. Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma[J]. Physical Review Letters, 108, 021601(2012).
[11] Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 24, 5925-5932(2009).
[12] Adamczyk L, Adkins J K, Agakishiev G et al. Global Λ hyperon polarization in nuclear collisions[J]. Nature, 548, 62-65(2017).
[13] Aoki Y, Fodor Z, Katz S D et al. The QCD transition temperature: results with physical masses in the continuum limit[J]. Physics Letters B, 643, 46-54(2006).
[14] Aoki Y, Borsányi S, Dürr S et al. The QCD transition temperature: results with physical masses in the continuum limit II[J]. Journal of High Energy Physics, 2009, 88(2009).
[15] Bhattacharya T, Buchoff M I, Christ N H et al. QCD phase transition with chiral quarks and physical quark masses[J]. Physical Review Letters, 113, 082001(2014).
[16] He M, Li J F, Sun W M et al. Quark number susceptibility around the critical end point[J]. Physical Review D, 79, 036001(2008).
[17] Fischer C S, Luecker J, Mueller J A. Chiral and deconfinement phase transitions of two-flavour QCD at finite temperature and chemical potential[J]. Physics Letters B, 702, 438-441(2011).
[18] Shi C, Wang Y L, Jiang Y et al. Locate QCD critical end point in a continuum model study[J]. Journal of High Energy Physics, 2014, 14(2014).
[19] Gao F, Liu Y X. QCD phase transitions via a refined truncation of Dyson-Schwinger equations[J]. Physical Review D, 94, 076009(2016).
[20] Du Y L, Cui Z F, Xia Y H et al. Discussions on the crossover property within the Nambu-Jona-Lasinio model[J]. Physical Review D, 88, 114019(2013).
[21] Du Y L, Lu Y, Xu S S et al. Susceptibilities and critical exponents within the Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 30, 1550199(2015).
[22] Costa P, Ruivo M C, de Sousa C A. Thermodynamics and critical behavior in the Nambu-Jona-Lasinio model of QCD[J]. Physical Review D, 77, 096001(2008).
[23] Fukushima K. Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop[J]. Physical Review D, 77, 114028(2008).
[24] Fu W J, Zhang Z, Liu Y X. 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature and nonzero chemical potential[J]. Physical Review D, 77, 014006(2008).
[25] Costa P, de Sousa C A, Ruivo M C et al. The QCD critical end point in the PNJL model[J]. EPL (Europhysics Letters), 86, 31001(2009).
[26] Fu W J, Pawlowski J M, Rennecke F. QCD phase structure at finite temperature and density[J]. Physical Review D, 101, 054032(2020).
[27] Adhikari P, Andersen J O. QCD at finite isospin density: Chiral perturbation theory confronts lattice data[J]. Physics Letters B, 804, 135352(2020).
[28] Adhikari P, Andersen J O, Kneschke P. Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature[J]. The European Physical Journal C, 79, 874(2019).
[29] Schaefer B J, Pawlowski J M, Wambach J. Phase structure of the Polyakov-quark-meson model[J]. Physical Review D, 76, 074023(2007).
[30] Nickel D. Inhomogeneous phases in the Nambu-Jona-Lasinio and quark-meson model[J]. Physical Review D, 80, 074025(2009).
[31] Skokov V, Friman B, Redlich K. Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon density[J]. Physical Review C, 83, 054904(2011).
[32] Luo X F, Xu N. Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview[J]. Nuclear Science and Techniques, 28, 112(2017).
[33] Luo X F. Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR[C].
[34] Luo X F, Wang Q, Xu N et al[M]. Properties of QCD matter at high baryon density(2022).
[35] Belavin A A, Polyakov A M, Schwartz A S et al. Pseudoparticle solutions of the Yang-Mills equations[J]. Physics Letters B, 59, 85(1975).
[36] Adler S L. Axial-vector vertex in spinor electrodynamics[J]. Physical Review, 177, 2426-2438(1969).
[37] Bell J S, Jackiw R. A PCAC puzzle: π0→γγ in theσ-model[J]. Nuovo Cimento A, 60, 47-61(1969).
[38] Christ N H. Conservation-law violation at high energy by anomalies[J]. Physical Review D, 21, 1591-1602(1980).
[39] Smilga A V. Anomaly mechanism at finite temperature[J]. Physical Review D, Particles and Fields, 45, 1378-1394(1992).
[40] Yang L K, Luo X F, Segovia J et al. A brief review of chiral chemical potential and its physical effects[J]. Symmetry, 12, 2095(2020).
[41] Ruggieri M, Peng G X, Chernodub M. Chiral relaxation time at the crossover of quantum chromodynamics[J]. Physical Review D, 94, 054011(2016).
[42] Ruggieri M, Peng G X. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density[J]. Physical Review D, 93, 094021(2016).
[43] Ruggieri M, Chernodub M N, Lu Z Y. Topological susceptibility, divergent chiral density, and phase diagram of chirally imbalanced QCD medium at finite temperature[J]. Physical Review D, 102, 014031(2020).
[44] Bass S A, Belkacem M, Bleicher M et al. Microscopic models for ultrarelativistic heavy ion collisions[J]. Progress in Particle and Nuclear Physics, 41, 255-369(1998).
[45] Palhares L F, Fraga E S, Kodama T. Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions[J]. Journal of Physics G: Nuclear and Particle Physics, 38, 085101(2011).
[46] Braun J, Klein B, Schaefer B J. On the phase structure of QCD in a finite volume[J]. Physics Letters B, 713, 216-223(2012).
[47] Skokov V, Friman B, Redlich K. Volume fluctuations and higher-order cumulants of the net baryon number[J]. Physical Review C, 88, 034911(2013).
[48] Bhattacharyya A, Deb P, Ghosh S K et al. Thermodynamic properties of strongly interacting matter in a finite volume using the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 87, 054009(2013).
[49] Bhattacharyya A, Ray R, Sur S. Fluctuation of strongly interacting matter in the Polyakov-Nambu-Jona-Lasinio model in a finite volume[J]. Physical Review D, 91, 051501(2015).
[50] Klein B. Modeling finite-volume effects and chiral symmetry breaking in two-flavor QCD thermodynamics[J]. Physics Reports, 1, 707-708(2017).
[51] Tripolt R A, Braun J, Klein B et al. Effect of fluctuations on the QCD critical point in a finite volume[J]. Physical Review D, 90, 054012(2014).
[52] Juričić A, Schaefer B J. Chiral thermodynamics in a finite box[J]. Acta Physica Polonica B Proceedings Supplement, 10, 609(2017).
[53] Watts A L, Andersson N, Chakrabarty D et al. Colloquium: Measuring the neutron star equation of state using X-ray timing[J]. Reviews of Modern Physics, 88, 021001(2016).
[54] Jiang Y, Liao J F. Pairing phase transitions of matter under rotation[J]. Physical Review Letters, 117, 192302(2016).
[55] Chernodub M N, Gongyo S. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics[J]. Journal of High Energy Physics, 2017, 136(2017).
[56] Ebihara S, Fukushima K, Mameda K. Boundary effects and gapped dispersion in rotating Fermionic matter[J]. Physics Letters B, 764, 94-99(2017).
[57] Zhang Z, Shi C, He X T et al. Chiral phase transition inside a rotating cylinder within the Nambu-Jona-Lasinio model[J]. Physical Review D, 102, 114023(2020).
[58] Wang L X, Jiang Y, He L Y et al. Chiral vortices and pseudoscalar condensation due to rotation[J]. Physical Review D, 100, 114009(2019).
[59] Sun F, Huang A P. Properties of strange quark matter under strong rotation[J]. Physical Review D, 106, 076007(2022).
[60] Nishimura K, Yamamoto N. Topological term, QCD anomaly, and the η' chiral soliton lattice in rotating baryonic matter[J]. Journal of High Energy Physics, 2020, 196(2020).
[61] Fujimoto Y, Fukushima K, Hidaka Y. Deconfining phase boundary of rapidly rotating hot and dense matter and analysis of moment of inertia[J]. Physics Letters B, 816, 136184(2021).
[62] Chernodub M N. Inhomogeneous confining-deconfining phases in rotating plasmas[J]. Physical Review D, 103, 054027(2021).
[63] Chen X, Zhang L, Li D N et al. Gluodynamics and deconfinement phase transition under rotation from holography[J]. Journal of High Energy Physics, 2021, 132(2021).
[64] Braguta V V, Kotov A Y, Kuznedelev D D et al. Study of the confinement/deconfinement phase transition in rotating lattice SU(3) gluodynamics[J]. JETP Letters, 112, 6-12(2020).
[65] Braguta V V, Kotov A Y, Kuznedelev D D et al. Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics[J]. Physical Review D, 103, 094515(2021).
[66] Chernodub M N, Gongyo S. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions[J]. Physical Review D, 95, 096006(2017).
[67] Braga N R F, Faulhaber L F, Junqueira O C. Confinement-deconfinement temperature for a rotating quark-gluon plasma[J]. Physical Review D, 105, 106003(2022).
[68] Chen H L, Fukushima K, Huang X G et al. Analogy between rotation and density for Dirac fermions in a magnetic field[J]. Physical Review D, 93, 104052(2016).
[69] Liu Y Z, Zahed I. Pion condensation by rotation in a magnetic field[J]. Physical Review Letters, 120, 032001(2018).
[70] Cao G Q, He L Y. Rotation induced charged pion condensation in a strong magnetic field: a Nambu-Jona-Lasino model study[J]. Physical Review D, 100, 094015(2019).
[71] Sadooghi N, Tabatabaee Mehr S M A, Taghinavaz F. Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter[J]. Physical Review D, 104, 116022(2021).
[72] Cao G Q. Charged rho superconductor in the presence of magnetic field and rotation[J]. The European Physical Journal C, 81, 148(2021).
[73] Son D T, Surówka P. Hydrodynamics with triangle anomalies[J]. Physical Review Letters, 103, 191601(2009).
[74] Kharzeev D E, Son D T. Testing the chiral magnetic and chiral vortical effects in heavy ion collisions[J]. Physical Review Letters, 106, 062301(2011).
[75] Landsteiner K, Megías E, Melgar L et al. Holographic gravitational anomaly and chiral vortical effect[J]. Journal of High Energy Physics, 2011, 121(2011).
[76] Landsteiner K, Megías E, Peña-Benítez F. Frequency dependence of the chiral vortical effect[J]. Physical Review D, 90, 065026(2014).
[77] Kharzeev D E, Liao J, Voloshin S A et al. Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report[J]. Progress in Particle and Nuclear Physics, 88, 1-28(2016).
[78] Abramchuk R, Khaidukov Z V, Zubkov M A. Anatomy of the chiral vortical effect[J]. Physical Review D, 98, 076013(2018).
[79] Zubkov M A. Hall effect in the presence of rotation[J]. EPL (Europhysics Letters), 121, 47001(2018).
[80] Flachi A, Fukushima K. Chiral vortical effect with finite rotation, temperature, and curvature[J]. Physical Review D, 98, 096011(2018).
[81] Lin S, Yang L X. Magneto-vortical effect in strong magnetic field[J]. Journal of High Energy Physics, 2021, 54(2021).
[82] Buballa M. NJL-model analysis of dense quark matter[J]. Physics Reports, 407, 205-376(2005).
[83] Oertel M, Hempel M, Klähn T et al. Equations of state for supernovae and compact stars[J]. Reviews of Modern Physics, 89, 015007(2017).
[84] Haensel P, Potekhin A Y, Yakovlev D G[M]. Neutron stars(2007).
[85] LI Ang, HU Jinniu, BAO Shishao et al. Dense matter equation of state: neutron star and strange star[J]. Nuclear Physics Review, 36, 1-36(2019).
[86] Antoniadis J, Freire P C C, Wex N et al. A massive pulsar in a compact relativistic binary[J]. Science, 340, 448, 1233232(2013).
[87] Demorest P B, Pennucci T, Ransom S M et al. A two-solar-mass neutron star measured using Shapiro delay[J]. Nature, 467, 1081-1083(2010).
[88] Kaplan D L, Bhalerao V B, van Kerkwijk M H et al. A metal-rich low-gravity companion to a massive millisecond pulsar[J]. The Astrophysical Journal Letters, 765, 158(2013).
[89] Smits R, Lorimer D R, Kramer M et al. Pulsar science with the five hundred metre Aperture Spherical Telescope[J]. Astronomy & Astrophysics, 505, 919-926(2009).
[90] Gendreau K C, Arzoumanian Z, Okajima T. The Neutron star Interior Composition ExploreR (NICER): an explorer mission of opportunity for soft X-ray timing spectroscopy[C], 8443, 322-329(2012).
[91] Campana R, Feroci M, Del Monte E et al. The LOFT (large observatory for X-ray timing) background simulations[C], 8443, 1636-1644(2012).
[92] Raaijmakers G, Riley T E, Watts A L et al. A NICER view of PSR J0030+0451: implications for the dense matter equation of state[J]. The Astrophysical Journal Letters, 887, L22(2019).
[93] Riley T E, Watts A L, Bogdanov S et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation[J]. The Astrophysical Journal Letters, 887, L21(2019).
[94] Bogdanov S, Guillot S, Ray P S et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. I. the millisecond pulsar X-ray data set[J]. The Astrophysical Journal Letters, 887, L25(2019).
[95] Guillot S, Kerr M, Ray P S et al. NICER X-ray observations of seven nearby rotation-powered millisecond pulsars[J]. The Astrophysical Journal Letters, 887, L27(2019).
[96] Miller M C, Lamb F K, Dittmann A J et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter[J]. The Astrophysical Journal Letters, 887, L24(2019).
[97] Bogdanov S, Lamb F K, Mahmoodifar S et al. Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. II. emission from hot spots on a rapidly rotating neutron star[J]. The Astrophysical Journal Letters, 887, L26(2019).
[98] Abbott B P, Abbott R, Abbott T D et al. GW170817: observation of gravitational waves from a binary neutron star inspiral[J]. Physical Review Letters, 119, 161101(2017).
[99] Abbott B P, Abbott R, Abbott T D et al. Properties of the binary neutron star merger GW170817[J]. Physical Review X, 9, 011001(2019).
[100] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. I[J]. Physical Review, 122, 345-358(1961).
[101] Nambu Y, Jona-Lasinio G. Dynamical model of elementary particles based on an analogy with superconductivity. II[J]. Physical Review, 124, 246-254(1961).
[102] Klevansky S P. The Nambu-Jona-Lasinio model of quantum chromodynamics[J]. Reviews of Modern Physics, 64, 649-708(1992).
[103] Hatsuda T, Kunihiro T. QCD phenomenology based on a chiral effective Lagrangian[J]. Physics Reports, 247, 221-367(1994).
[104] Hatsuda T, Kunihiro T. Soft modes associated with chiral symmetry breaking: the use of a QCD-motivated effective interaction[J]. Progress of Theoretical Physics, 74, 765-781(1985).
[105] Wang F, Cao Y K, Zong H S. Novel self-consistent mean field approximation and its application in strong interaction phase transitions[J]. Chinese Physics C, 43, 084102(2019).
[106] Roberts C D, Schmidt S M. Dyson-Schwinger equations: Density, temperature and continuum strong QCD[J]. Progress in Particle and Nuclear Physics, 45, S1–S103(2000).
[107] Fischer C S. QCD at finite temperature and chemical potential from Dyson-Schwinger equations[J]. Progress in Particle and Nuclear Physics, 105, 1-60(2019).
[108] Maris P, Roberts C D. π- and K-meson Bethe-Salpeter amplitudes[J]. Physical Review C, 56, 3369-3383(1997).
[109] Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 60, 055214(1999).
[110] Qin S X, Chang L, Chen H et al. Phase diagram and critical end point for strongly interacting quarks[J]. Physical Review Letters, 106, 172301(2011).
[111] Fischer C S, Luecker J. Propagators and phase structure of Nf=2 and Nf=2+1 QCD[J]. Physics Letters B, 718, 1036-1043(2013).
[112] Fischer C S, Luecker J, Welzbacher C A. Phase structure of three and four flavor QCD[J]. Physical Review D, 90, 034022(2014).
[113] Shi C, Du Y L, Xu S S et al. Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 93, 036006(2016).
[114] Wang B, Wang Y L, Cui Z F et al. Effect of the chiral chemical potential on the position of the critical endpoint[J]. Physical Review D, 91, 034017(2015).
[115] Fischer C S, Grüter B, Alkofer R. Solving coupled Dyson-Schwinger equations on a compact manifold[J]. Annals of Physics, 321, 1918-1938(2006).
[116] Fan W K, Luo X F, Zong H S. Mapping the QCD phase diagram with susceptibilities of conserved charges within Nambu-Jona-Lasinio model[J]. International Journal of Modern Physics A, 32, 1750061(2017).
[117] Fan W K, Luo X F, Zong H S. Probing the QCD phase structure with higher order baryon number susceptibilities within the NJL model[J]. Chinese Physics C, 43, 033103(2019).
[118] Fan W K, Luo X F, Zong H S. Second to tenth order susceptibilities of conserved charges within a modified Nambu-Jona-Lasinio model[J]. Chinese Physics C, 43, 054109(2019).
[119] Shao G Y, Tang Z D, Gao X Y et al. Baryon number fluctuations and the phase structure in the PNJL model[J]. The European Physical Journal C, 78, 138(2018).
[120] Ferreira M, Costa P, Providência C. Presence of a critical endpoint in the QCD phase diagram from the net-baryon number fluctuations[J]. Physical Review D, 98, 034006(2018).
[121] Li Z B, Xu K, Wang X Y et al. The kurtosis of net baryon number fluctuations from a realistic Polyakov-Nambu-Jona-Lasinio model along the experimental freeze-out line[J]. The European Physical Journal C, 79, 245(2019).
[122] Isserstedt P, Buballa M, Fischer C S et al. Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations[J]. Physical Review D, 100, 074011(2019).
[123] Zhao A M, Cui Z F, Jiang Y et al. Nonlinear susceptibilities under the framework of Dyson-Schwinger equations[J]. Physical Review D, 90, 114031(2014).
[124] Xin X Y, Qin S X, Liu Y X. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach[J]. Physical Review D, 90, 076006(2014).
[125] Fu W J, Luo X F, Pawlowski J M et al. Hyper-order baryon number fluctuations at finite temperature and density[J]. Physical Review D, 104, 094047(2021).
[126] Zhao A M, Luo X F, Zong H S. Baryon number fluctuations in quasi-particle model[J]. The European Physical Journal C, 77, 207(2017).
[127] Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios[J]. Physical Review D, 95, 056015(2017).
[128] Aggarwal M M, Ahammed Z, Alakhverdyants A V et al. Higher moments of net proton multiplicity distributions at RHIC[J]. Physical Review Letters, 105, 022302(2010).
[129] Adamczyk L, Adkins J K, Agakishiev G et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC[J]. Physical Review Letters, 113, 092301(2014).
[130] Adam J, Adamczyk L, Adams J R et al. Beam energy dependence of net-Λ fluctuations measured by the STAR experiment at RHIC[J]. Physical Review C, 102, 024903(2020).
[131] Adamczyk L, Adams J R, Adkins J K et al. Collision energy dependence of moments of net-kaon multiplicity distributions at RHIC[J]. Physics Letters B, 785, 551-560(2018).
[132] Kitazawa M, Asakawa M. Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 85, 021901(2012).
[133] Kitazawa M, Asakawa M. Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions[J]. Physical Review C, 86, 024904(2012).
[134] Hatta Y, Stephanov M A. Proton-number fluctuation as a signal of the QCD critical end point[J]. Physical Review Letters, 91, 102003(2003).
[135] Athanasiou C, Rajagopal K, Stephanov M. Using higher moments of fluctuations and their ratios in the search for the QCD critical point[J]. Physical Review D, 82, 074008(2010).
[136] Borsanyi S, Fodor Z, Katz S D et al. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?[J]. Physical Review Letters, 113, 052301(2014).
[137] Borsányi S, Fodor Z, Katz S D et al. Freeze-out parameters: lattice meets experiment[J]. Physical Review Letters, 111, 062005(2013).
[138] Cleymans J, Oeschler H, Redlich K et al. Status of chemical freeze-out[J]. Journal of Physics G: Nuclear and Particle Physics, 32, S165–S169(2006).
[139] Begun V V, Vovchenko V, Gorenstein M I. Updates to the p+p and A+A chemical freeze-out lines from the new experimental data[J]. Journal of Physics: Conference Series, 779, 012080(2017).
[140] Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Physical Review D, 78, 074033(2008).
[141] Fukushima K, Ruggieri M, Gatto R. Chiral magnetic effect in the Polyakov-Nambu-Jona-Lasinio model[J]. Physical Review D, 81, 114031(2010).
[142] Chernodub M N, Nedelin A S. Phase diagram of chirally imbalanced QCD matter[J]. Physical Review D, 83, 105008(2011).
[143] Ruggieri M. Critical end point of quantum chromodynamics detected by chirally imbalanced quark matter[J]. Physical Review D, 84, 014011(2011).
[144] Yamamoto A. Chiral magnetic effect in lattice QCD with a chiral chemical potential[J]. Physical Review Letters, 107, 031601(2011).
[145] Wang B, Wang Y L, Cui Z F et al. Effect of the chiral chemical potential on the position of the critical endpoint[J]. Physical Review D, 91, 034017(2015).
[146] Xu S S, Cui Z F, Wang B et al. Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations[J]. Physical Review D, 91, 056003(2015).
[147] Shi C, He X T, Jia W B et al. Chiral transition and the chiral charge density of the hot and dense QCD matter[J]. Journal of High Energy Physics, 2020, 122(2020).
[148] Blaschke D, Burau G, Kalinovsky Y L et al. Finite T meson correlations and quark deconfinement[J]. International Journal of Modern Physics A, 16, 2267-2291(2001).
[149] Maris P, Tandy P C. Bethe-Salpeter study of vector meson masses and decay constants[J]. Physical Review C, 60, 055214(1999).
[150] Shi C, Du Y L, Xu S S et al. Continuum study of the QCD phase diagram through an OPE-modified gluon propagator[J]. Physical Review D, 93, 036006(2016).
[151] Cui Z F, Cloët I C, Lu Y et al. Critical end point in the presence of a chiral chemical potential[J]. Physical Review D, 94, 071503(2016).
[152] Yu L, Liu H, Huang M. Effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes[J]. Physical Review D, 94, 014026(2016).
[153] Weller R D, Romatschke P. One fluid to rule them all: viscous hydrodynamic description of event-by-event central p+p, p+Pb and Pb+Pb collisions at s=5.02 TeV[J]. Physics Letters B, 774, 351-356(2017).
[154] Aidala C, Akiba Y, Alfred M et al. Creating small circular, elliptical, and triangular droplets of quark-gluon plasma[J]. Nature Physics, 15, 214-220(2019).
[155] Shi C, Jia W B, Sun A et al. Chiral crossover transition in a finite volume[J]. Chinese Physics C, 42, 023101(2018).
[156] Shi C, Xia Y H, Jia W B et al. Chiral phase diagram of strongly interacting matter at finite volume[J]. Science China Physics, Mechanics & Astronomy, 61, 082021(2018).
[157] Xu Y Z, Shi C, He X T et al. Chiral crossover transition from the Dyson-Schwinger equations in a sphere[J]. Physical Review D, 102, 114011(2020).
[158] Bernhardt J, Fischer C S, Isserstedt P et al. Critical endpoint of QCD in a finite volume[J]. Physical Review D, 104, 074035(2021).
[160] Almási G A, Pisarski R D, Skokov V V. Volume dependence of baryon number cumulants and their ratios[J]. Physical Review D, 95, 056015(2017).
[161] Cheng P, Luo X F, Ping J L et al. Finite volume effects on the quarkonium dissociation temperature in an impenetrable QGP sphere[J]. Physical Review D, 100, 014027(2019).
[162] Zhao Y P, Yin P L, Yu Z H et al. Finite volume effects on chiral phase transition and pseudoscalar mesons properties from the Polyakov-Nambu-Jona-Lasinio model[J]. Nuclear Physics B, 952, 114919(2020).
[163] Duffy G, Ottewill A C. Rotating quantum thermal distribution[J]. Physical Review D, 67, 044002(2003).
[164] Ambruş V E, Winstanley E. Rotating fermions inside a cylindrical boundary[J]. Physical Review D, 93, 104014(2016).
[165] Zhang Z, Shi C, Luo X F et al. Rotating fermions inside a spherical boundary[J]. Physical Review D, 102, 065002(2020).
[166] Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 7, 2850-2862(1973).
[167] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 14, 870-892(1976).
[168] Cook G B, Shapiro S L, Teukolsky S A. Rapidly rotating neutron stars in general relativity: realistic equations of state[J]. The Astrophysical Journal Letters, 424, 823(1994).
[169] Skokov V V, Illarionov A Y, Toneev V D. Estimate of the magnetic field strength in heavy-ion collisions[J]. International Journal of Modern Physics A, 24, 5925-5932(2009).
[170] Voronyuk V, Toneev V D, Cassing W et al. Electromagnetic field evolution in relativistic heavy-ion collisions[J]. Physical Review C, 83, 054911(2011).
[171] Deng W T, Huang X G. Event-by-event generation of electromagnetic fields in heavy-ion collisions[J]. Physical Review C, 85, 044907(2012).
[172] Duncan R C, Thompson C. Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts[J]. The Astrophysical Journal Letters, 392, L9(1992).
[173] Cao G Q. Recent progresses on QCD phases in a strong magnetic field: views from Nambu-Jona-Lasinio model[J]. The European Physical Journal A, 57, 264(2021).
[174] McInnes B. Inverse magnetic/shear catalysis[J]. Nuclear Physics B, 906, 40-59(2016).
[175] Fortin M, Providência C, Raduta A R et al. Neutron star radii and crusts: uncertainties and unified equations of state[J]. Physical Review C, 94, 035804(2016).
[176] Akmal A, Pandharipande V R, Ravenhall D G. Equation of state of nucleon matter and neutron star structure[J]. Physical Review C, 58, 1804-1828(1998).
[177] Douchin F, Haensel P. A unified equation of state of dense matter and neutron star structure[J]. Astronomy & Astrophysics, 380, 151-167(2001).
[178] Masuda K, Hatsuda T, Takatsuka T. Hadron-quark crossover and massive hybrid stars[J]. Progress of Theoretical and Experimental Physics, 2013, 073D01(2013).
[179] Li C M, Yan Y, Geng J J et al. Constraints on the hybrid equation of state with a crossover hadron-quark phase transition in the light of GW170817[J]. Physical Review D, 98, 083013(2018).
[180] Itoh N. Hydrostatic equilibrium of hypothetical quark stars[J]. Progress of Theoretical Physics, 44, 291-292(1970).
[181] Terazawa H. Super-hypernuclei in the quark-shell model[J]. Journal of the Physical Society of Japan, 58, 1989(1979).
[182] Bodmer A R. Collapsed nuclei[J]. Physical Review D, 4, 1601-1606(1971).
[183] Witten E. Cosmic separation of phases[J]. Physical Review D, 30, 272-285(1984).
[184] Li B L, Cui Z F, Yu Z H et al. Structures of the strange quark stars within a quasiparticle model[J]. Physical Review D, 99, 043001(2019).
[185] Wang Q Y, Zhao T, Zong H S. On the stability of two-flavor and three-flavor quark matter in quark stars within the framework of NJL model[J]. Modern Physics Letters A, 35, 2050321(2020).
[186] Li B L, Yan Y, Ping J L. Strange quark mass dependence of strange quark star properties[J]. The European Physical Journal C, 81, 921(2021).
[187] Li B L, Yan Y, Ping J L. Tidal deformabilities and radii of strange quark stars[J]. Physical Review D, 104, 043002(2021).
[188] Li B L, Yan Y, Ping J L. Hadron-quark crossover and hybrid stars with quark core[J]. Journal of Physics G: Nuclear and Particle Physics, 49, 045201(2022).
[189] Xu S S. Phase structures of neutral dense quark matter and application to strange stars[J]. Chinese Physics C, 46, 014105(2022).
[190] Li B L, Yan Y, Kang G Z et al. Properties of hybrid stars with hadron-quark crossover[J]. Modern Physics Letters A, 37, 2250074(2022).
[191] Holdom B, Ren J, Zhang C. Quark matter may not be strange[J]. Physical Review Letters, 120, 222001(2018).
[192] Yang L K, Luo X F, Zong H S. QCD phase diagram in chiral imbalance with self-consistent mean field approximation[J]. Physical Review D, 100, 094012(2019).
[193] Yu Z X, Zhao T, Zong H S. Self-consistent mean field approximation and application in three-flavor NJL model[J]. Chinese Physics C, 44, 074104(2020).
[194] Su L Q, Shi C, Huang Y F et al. Hybrid stars can be self-bound[J]. Physical Review D, 103, 094037(2021).
[195] Wang Q W, Shi C, Zong H S. Nonstrange quark stars from an NJL model with proper-time regularization[J]. Physical Review D, 100, 123003(2019).
[196] Zhao T, Zheng W, Wang F et al. Do current astronomical observations exclude the existence of nonstrange quark stars?[J]. Physical Review D, 100, 043018(2019).
[197] Capano C D, Tews I, Brown S M et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory[J]. Nature Astronomy, 4, 625-632(2020).
[198] Yuan W L, Li A, Miao Z Q et al. Interacting ud and uds quark matter at finite densities and quark stars[J]. Physical Review D, 105, 123004(2022).
[200] Geng J J, Li B, Huang Y F. Repeating fast radio bursts from collapses of the crust of a strange star[J]. The Innovation, 2, 100152(2021).