• Journal of Infrared and Millimeter Waves
  • Vol. 43, Issue 4, 497 (2024)
Yuan MA1,2, Yu-Zhe LIN1,*, Chen-Yang WAN1,2, Zi-Xian WANG1,2..., Xu-Yan ZHOU1,3, Jin-Chuan ZHANG1, Feng-Qi LIU1 and Wan-Hua ZHENG1,2,**|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • 2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Weifang Academy of Advanced Opto-Electronic Circuits,Weifang 261021,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2024.04.009 Cite this Article
    Yuan MA, Yu-Zhe LIN, Chen-Yang WAN, Zi-Xian WANG, Xu-Yan ZHOU, Jin-Chuan ZHANG, Feng-Qi LIU, Wan-Hua ZHENG. Optical facet coatings for high-performance LWIR quantum cascade lasers at λ ∼ 8.5 µm[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 497 Copy Citation Text show less
    References

    [1] R C Sharma, S Kumar, S Kumar et al. Photoacoustic remote sensing of suspicious objects for defence and forensic applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117445(2020).

    [2] Y Q SUN, K YANG, J H LIU et al. High sensitivity and fast detection system for sensing of explosives and hazardous materials. Sensors and Actuators B-Chemical, 360, 131640(2022).

    [3] O Spitz, P Didier, L Durupt et al. Free-space communication with directly modulated mid-Infrared quantum cascade devices. IEEE Journal of Selected Topics in Quantum Electronics, 28, 1-9(2022).

    [4] C K N Patel, A Lyakh, R Maulini et al. QCL as a game changer in MWIR and LWIR military and homeland security applications, 8373, 599-607(2012).

    [5] W ZHOU, Q Y LU, D H WU et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm. Opt Express, 27, 15776-15785(2019).

    [6] E C Schundler, D J Mansur, M Hilton et al. Multipath extinction detector for chemical sensing, 12116, 208-217(2022).

    [7] M Joharifar, H Dely, X D PANG et al. High-speed 9.6-μm long-wave infrared free-space transmission with a directly-modulated QCL and a fully-passive QCD. Journal of Lightwave Technology, 41, 1087-1094(2023).

    [8] M Troccoli, A Lyakh, J Y FAN et al. Long-wave IR quantum cascade lasers for emission in the λ=8-12 μm spectral region. Optical Materials Express, 3, 1546-1560(2013).

    [9] F XIE, C Caneau, H P Leblanc et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ>10 μm. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1200407(2013).

    [10] R Maulini, A Lyakh, A Tsekoun et al. High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings. Applied Physics Letters, 95, 151112(2009).

    [11] W J ZHOU, D H WU, Q Y LU et al. Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays. Scientific Reports, 8, 14866(2018).

    [12] J Nguyen, J S YU, A Evans et al. Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers. Applied Physics Letters, 89, 111113(2006).

    [13] F H WANG, S Slivken, M Razeghi. High-brightness LWIR quantum cascade lasers. Optics Letters, 46, 5193-5196(2021).

    [14] W D Herzog, B B Goldberg, M S Ünlü. Beam steering in narrow-stripe high-power 980-nm laser diodes. IEEE Photonics Technology Letters, 12, 1604-1606(2000).

    [15] H Page, P Collot, A D Rossi et al. High reflectivity metallic mirror coatings for mid-infrared (λ≈9 μm) unipolar semiconductor lasers. Semiconductor Science and Technology, 17, 1312(2002).

    [16] S Z NIU, J Q LIU, Y ZHAO et al. High-performance bound-to-continuum quantum cascade lasers at λ~8 μm. Journal of Nanoscience and Nanotechnology, 18, 7498-7501(2018).

    [17] Y Q SUN, R YIN, J C ZHANG et al. High-performance quantum cascade lasers at λ~9 μm grown by MOCVD. Optics Express, 30, 37272-37280(2022).

    [18] T FEI, S ZHAI, J ZHANG et al. High power λ~8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K. Journal of Semiconductors, 42, 112301(2021).

    [19] J Kischkat, S Peters, B Gruska et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Applied Optics, 51, 6789-6798(2012).

    [20] Y Nigara. Measurement of the optical constants of yttrium oxide. Japanese Journal of Applied Physics, 7, 404(1968).

    [21] W J Tropf, M E Thomas. Yttrium oxide (Y2O3). Handbook of Optical Constants of Solids, 1079-1096(1997).

    [22] S Slivken, A Evans, J S YU et al. High power, continuous-wave, quantum cascade lasers for MWIR and LWIR applications, 6127, 15-24(2006).

    [23] J S YU, S Slivken, A J Evans et al. High-performance continuous-wave operation of λ∼4.6 μm quantum-cascade lasers above room temperature. IEEE Journal of Quantum Electronics, 44, 747-754(2008).

    [24] J P Vanderziel, R A Logan, R D Dupuis. High-power (AlGa)As strip-buried heterostructure lasers. IEEE Journal of Quantum Electronics, 21, 1659-1665(1985).

    [25] A Wittmann, A Hugi, E Gini et al. Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning. IEEE Journal of Quantum Electronics, 44, 1083-1088(2008).

    [26] W W Rigrod. Homogeneously broadened CW lasers with uniform distributed loss. IEEE Journal of Quantum Electronics, 14, 377-381(1978).

    Yuan MA, Yu-Zhe LIN, Chen-Yang WAN, Zi-Xian WANG, Xu-Yan ZHOU, Jin-Chuan ZHANG, Feng-Qi LIU, Wan-Hua ZHENG. Optical facet coatings for high-performance LWIR quantum cascade lasers at λ ∼ 8.5 µm[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 497
    Download Citation