• Acta Optica Sinica
  • Vol. 45, Issue 6, 0628008 (2025)
Qinglin Tian1,*, Donghua Lu1, Yao Li2, and Chengkai Pei1
Author Affiliations
  • 1National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, Beijing Research Institute of Uranium Geology, Beijing 100029, China
  • 2School of Geographical Sciences, Southwest University, Chongqing 400715, China
  • show less
    DOI: 10.3788/AOS241436 Cite this Article Set citation alerts
    Qinglin Tian, Donghua Lu, Yao Li, Chengkai Pei. Dense Hybrid Attention Network for Remote Sensing Building Change Detection[J]. Acta Optica Sinica, 2025, 45(6): 0628008 Copy Citation Text show less
    Overview architecture of proposed DHANet
    Fig. 1. Overview architecture of proposed DHANet
    Convolutional block attention module
    Fig. 2. Convolutional block attention module
    Diagrams of traditional convolution and dilated convolution. (a) Traditional convolution; (b) dilated convolution
    Fig. 3. Diagrams of traditional convolution and dilated convolution. (a) Traditional convolution; (b) dilated convolution
    Multi-scale features aggregation module
    Fig. 4. Multi-scale features aggregation module
    Hybrid attention module
    Fig. 5. Hybrid attention module
    Interlaced sparse self-attention module
    Fig. 6. Interlaced sparse self-attention module
    Data sets. (a) LEVIR-CD; (b) WHU-CD
    Fig. 7. Data sets. (a) LEVIR-CD; (b) WHU-CD
    Qualitative results on LEVIR-CD dataset
    Fig. 8. Qualitative results on LEVIR-CD dataset
    Qualitative results on WHU-CD dataset
    Fig. 9. Qualitative results on WHU-CD dataset
    MethodP /%R /%F1 /%IoU /%
    FC-EF86.9180.1783.4071.53
    FC-Siam-Conc91.9976.7783.6971.96
    FC-Siam-Diff89.5383.3186.3175.92
    STANet83.8191.0087.2677.40
    IFN93.0286.3389.5581.08
    BIT91.8988.4890.1582.07
    DHANet92.0290.0891.0483.55
    Table 1. Quantitative results on LEVIR-CD dataset
    MethodP /%R /%F1 /%IoU /%
    FC-EF86.4471.2478.1164.08
    FC-Siam-Conc87.5575.1080.8567.85
    FC-Siam-Diff86.4076.6481.2368.39
    STANet75.7089.8582.1769.74
    IFN91.6582.9487.0877.11
    BIT89.6585.0487.2877.44
    DHANet90.8687.9189.3680.77
    Table 2. Quantitative results on WHU-CD dataset
    DCMSAHAMP /%R /%F1 /%IoU /%
    ×××89.8387.6488.7279.73
    ×90.6289.0989.8581.57
    ×90.5589.2589.9081.65
    ×91.8389.3790.5882.79
    92.0290.0891.0483.55
    Table 3. Quantitative results of ablation experiments
    MethodParams /MFLOPs /GF1 /%
    FC-EF1.352.9283.40
    FC-Siam-Conc1.544.5583.69
    FC-Siam-Diff1.353.9986.31
    STANet23.3223.8487.26
    IFN50.7182.2689.55
    BIT3.5510.6090.15
    DHANet21.6532.2691.04
    Table 4. Comparisons of complexity on LEVIR-CD dataset
    Qinglin Tian, Donghua Lu, Yao Li, Chengkai Pei. Dense Hybrid Attention Network for Remote Sensing Building Change Detection[J]. Acta Optica Sinica, 2025, 45(6): 0628008
    Download Citation