Qinglin Tian, Donghua Lu, Yao Li, Chengkai Pei. Dense Hybrid Attention Network for Remote Sensing Building Change Detection[J]. Acta Optica Sinica, 2025, 45(6): 0628008

Search by keywords or author
- Acta Optica Sinica
- Vol. 45, Issue 6, 0628008 (2025)

Fig. 1. Overview architecture of proposed DHANet

Fig. 2. Convolutional block attention module

Fig. 3. Diagrams of traditional convolution and dilated convolution. (a) Traditional convolution; (b) dilated convolution

Fig. 4. Multi-scale features aggregation module

Fig. 5. Hybrid attention module

Fig. 6. Interlaced sparse self-attention module

Fig. 7. Data sets. (a) LEVIR-CD; (b) WHU-CD

Fig. 8. Qualitative results on LEVIR-CD dataset

Fig. 9. Qualitative results on WHU-CD dataset
|
Table 1. Quantitative results on LEVIR-CD dataset
|
Table 2. Quantitative results on WHU-CD dataset
|
Table 3. Quantitative results of ablation experiments
|
Table 4. Comparisons of complexity on LEVIR-CD dataset

Set citation alerts for the article
Please enter your email address