• Advanced Photonics
  • Vol. 4, Issue 6, 066003 (2022)
Xiang You1、2、3、†, Ming-Yang Zheng4, Si Chen2、3, Run-Ze Liu2、3, Jian Qin2、3, Mo-Chi Xu2、3, Zheng-Xuan Ge2、3, Tung-Hsun Chung2、3, Yu-Kun Qiao2、3, Yang-Fan Jiang4, Han-Sen Zhong2、3, Ming-Cheng Chen2、3, Hui Wang2、3, Yu-Ming He2、3, Xiu-Ping Xie4, Hao Li5, Li-Xing You5, Christian Schneider6、7, Juan Yin2、3, Teng-Yun Chen2、3, Mohamed Benyoucef8, Yong-Heng Huo2、3, Sven Höfling6, Qiang Zhang2、3、4, Chao-Yang Lu2、3、9、*, and Jian-Wei Pan2、3、*
Author Affiliations
  • 1University of Science and Technology of China, School of Cyberspace Security, Hefei, China
  • 2University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, Hefei, China
  • 3University of Science and Technology of China, CAS Centre for Excellence in Quantum Information and Quantum Physics, Shanghai, China
  • 4Jinan Institute of Quantum Technology, Jinan, China
  • 5Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology (SIMIT), State Key Laboratory of Functional Materials for Informatics, Shanghai, China
  • 6Universitat Würzburg, Technische Physik, Physikalisches Instität and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Würzburg, Germany
  • 7University of Oldenburg, Institute of Physics, Oldenburg, Germany
  • 8University of Kassel, Institute of Nanostructure Technologies and Analytics, CINSaT, Kassel, Germany
  • 9NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.4.6.066003 Cite this Article Set citation alerts
    Xiang You, Ming-Yang Zheng, Si Chen, Run-Ze Liu, Jian Qin, Mo-Chi Xu, Zheng-Xuan Ge, Tung-Hsun Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiu-Ping Xie, Hao Li, Li-Xing You, Christian Schneider, Juan Yin, Teng-Yun Chen, Mohamed Benyoucef, Yong-Heng Huo, Sven Höfling, Qiang Zhang, Chao-Yang Lu, Jian-Wei Pan. Quantum interference with independent single-photon sources over 300 km fiber[J]. Advanced Photonics, 2022, 4(6): 066003 Copy Citation Text show less
    References

    [1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing, 8(1984).

    [2] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67, 661-663(1991).

    [3] C. H. Bennett et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895-1899(1993).

    [4] C. H. Bennett, G. Brassard. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working. ACM Sigact News, 20, 78-80(1989).

    [5] D. Bouwmeester et al. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [6] J.-W. Pan et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys., 84, 777-838(2012).

    [7] C.-Y. Lu et al. Micius quantum experiments in space. Rev. Mod. Phys., 94, 035001(2022).

    [8] N. Gisin et al. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [9] C.-Y. Lu, J.-W. Pan. Quantum-dot single-photon sources for the quantum Internet. Nat. Nanotechnol., 16, 1294-1296(2021).

    [10] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

    [11] Y.-M. He et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol., 8, 213-217(2013).

    [12] X. Ding et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett., 116, 020401(2016).

    [13] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340-345(2016).

    [14] H. Wang et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [15] F. Liu et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol., 13, 835-840(2018).

    [16] N. Tomm et al. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399-403(2021).

    [17] H. Wang et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett., 116, 213601(2016).

    [18] P. Lodahl. Quantum-dot based photonic quantum networks. Quantum Sci. Technol., 3, 013001(2017).

    [19] L. Zhai et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol., 17, 829-833(2022).

    [20] J. H. Weber et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol., 14, 23-26(2019).

    [21] M. Zopf et al. Frequency feedback for two-photon interference from separate quantum dots. Phys. Rev. B, 98, 161302(2018).

    [22] A. Thoma et al. Two-photon interference from remote deterministic quantum dot microlenses. Appl. Phys. Lett., 110, 011104(2017).

    [23] M. Reindl et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett., 17, 4090-4095(2017).

    [24] V. Giesz et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B, 92, 161302(2015).

    [25] P. Gold et al. Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths. Phys. Rev. B, 89, 035313(2014).

    [26] R. B. Patel et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics, 4, 632-635(2010).

    [27] S. Ates et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett., 109, 147405(2012).

    [28] E. B. Flagg et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett., 104, 137401(2010).

    [29] Y. He et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett., 111, 237403(2013).

    [30] L. Seravalli et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett., 98, 173112(2011).

    [31] T. Miyazawa et al. Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett., 109, 132106(2016).

    [32] J.-H. Kim et al. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 3, 577-584(2016).

    [33] M. Benyoucef et al. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett., 103, 162101(2013).

    [34] C. Nawrath et al. Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Appl. Phys. Lett., 115, 023103(2019).

    [35] S. Zaske et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett., 109, 147404(2012).

    [36] B. Kambs et al. Low-noise quantum frequency down-conversion of indistinguishable photons. Opt. Express, 24, 22250-22260(2016).

    [37] J. S. Pelc et al. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express, 20, 27510-27519(2012).

    [38] Y.-R. Fan et al. Effect of dispersion on indistinguishability between single-photon wave-packets. Photonics Res., 9, 1134-1143(2021).

    [39] D.-G. Im, Y. Kim, Y.-H. Kim. Dispersion cancellation in a quantum interferometer with independent single photons. Opt. Express, 29, 2348-2363(2021).

    [40] M. Zopf et al. Entanglement swapping with semiconductor-generated photons violates Bell’s inequality. Phys. Rev. Lett., 123, 160502(2019).

    [41] F. B. Basset et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett., 123, 160501(2019).

    [42] A. Delteil et al. Generation of heralded entanglement between distant hole spins. Nat. Phys., 12, 218-223(2016).

    [43] R. Stockill et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett., 119, 010503(2017).

    [44] J.-P. Chen et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett., 124, 070501(2020).

    [45] M. Pittaluga et al. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photonics, 15, 530-535(2021).

    [46] H. De Riedmatten et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett., 92, 047904(2004).

    [47] D. M. Greenberger et al. Bell’s theorem without inequalities. Am. J. Phys., 58, 1131-1143(1990).

    [48] S. Bartolucci et al. Fusion-based quantum computation(2021).

    [49] K. Azuma, K. Tamaki, H.-K. Lo. All-photonic quantum repeaters. Nat. Commun., 6, 6787(2015).

    [50] B. Kambs, C. Becher. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys., 20, 115003(2018).

    [51] A. M. Brańczyk. Hong-Ou-Mandel interference(2017).

    [52] Y. Yu et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578, 240-245(2020).

    [53] J. S. Pelc et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express, 19, 21445-21456(2011).

    Xiang You, Ming-Yang Zheng, Si Chen, Run-Ze Liu, Jian Qin, Mo-Chi Xu, Zheng-Xuan Ge, Tung-Hsun Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiu-Ping Xie, Hao Li, Li-Xing You, Christian Schneider, Juan Yin, Teng-Yun Chen, Mohamed Benyoucef, Yong-Heng Huo, Sven Höfling, Qiang Zhang, Chao-Yang Lu, Jian-Wei Pan. Quantum interference with independent single-photon sources over 300 km fiber[J]. Advanced Photonics, 2022, 4(6): 066003
    Download Citation