• Laser & Optoelectronics Progress
  • Vol. 54, Issue 4, 40001 (2017)
Pan An1、2、*, Zhang Yan1、2, Zhao Tianyu1、2, Wang Zhaojun1、2, Dan Dan1、2, Shi Yishi2、3, and Yao Baoli1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.040001 Cite this Article Set citation alerts
    Pan An, Zhang Yan, Zhao Tianyu, Wang Zhaojun, Dan Dan, Shi Yishi, Yao Baoli. Quantitative Phase Microscopy Imaging Based on Ptychography[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40001 Copy Citation Text show less
    References

    [1] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.

    [2] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16: 9s-13s.

    [3] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters, 1999, 24(5): 291-293.

    [4] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

    [5] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics, 2000, 39(23): 4070-4075.

    [6] Schnars U, Jüptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85-R101.

    [7] Schnars U, Jueptner W. Digital holography[M]. Heidelberg: Springer Berlin Heidelberg, 2005.

    [8] Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: A review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

    [9] Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15): 1008-1010.

    [10] Hartmann J. Bemerkungen uber den bau und die justirung von spektrographen (in German)[J]. Z Instrumentenkd, 1900, 20: 47-58.

    [11] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.

    [12] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen[J]. Journal of the Optical Society of America, 1971, 61(5): 656-660.

    [13] Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese J Lasers, 2016, 43(6): 0609001.

    [14] Teague M R. Deterministic phase retrieval: A Green′s function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

    [15] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586-2589.

    [16] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green′s function[J]. Journal of the Optical Society of America A, 2010, 27(10): 2244-2251.

    [17] Semichaevsky A, Testorf M. Phase-space interpretation of deterministic phase retrieval[J]. Journal of the Optical Society of America A, 2004, 21(11): 2173-2179.

    [18] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088-2090.

    [19] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8): 9220-9244.

    [20] Cheng Hong, Zhang Quanbing, Wei Sui, et al. Phase retrieval based on transport-of-intensity equation[J]. Acta Photonica Sinica, 2011, 40(10): 1566-1570.

    [21] Cheng Hong, Shen Chuan, Zhang Cheng, et al. Phase retrieval algorithm combining transport of intensity equation and angular spectrum iterative[J]. Chinese J Lasers, 2014, 41(6): 0609001.

    [22] Wang Xiao, Mao Heng, Zhao Dazun. Phase retrieval based on intensity transport equation[J]. Acta Optica Sinica, 2007, 27(12): 2117-2122.

    [23] Xue Bindang, Zheng Shiling, Jiang Zhiguo. Phase retrieval using transport of intensity equation solved by full multigrid method[J]. Acta Optica Sinica, 2009, 29(6): 1514-1518.

    [24] Liu Beibei, Yu Yingjie, Wu Xiaoyan, et al. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Optics and Precision Engineering, 2015, 23(10z): 77-84.

    [25] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation Ⅱ: Applications to microlens characterization[J]. Optics Express, 2014, 22(15): 18310-18324.

    [26] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.

    [27] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Optics Express, 2013, 21(5): 5346-5362.

    [28] Zuo C, Chen Q, Asundi A. Light field moment imaging: Comment[J]. Optics Letters, 2014, 39(3): 654.

    [29] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.

    [30] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.

    [31] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20-32.

    [32] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35(2): 237-246.

    [33] Gerchberg R W, Saxton W O. Phase determination from image and diffraction plane pictures in electron-microscope[J]. Optik, 1971, 34(3): 275-284.

    [34] Misell D. A method for the solution of the phase problem in electron microscopy[J]. Journal of Physics D, 1973, 6(1): L6-L9.

    [35] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [36] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

    [37] Ivanov V Y, Vorontsov M A, Sivokon V P. Phase retrieval from a set of intensity measurements: Theory and experiment[J]. Journal of the Optical Society of America A, 1992, 9(9): 1515-1524.

    [38] Yang Guozhen, Gu Benyuan. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 1981, 30(3): 410-413.

    [39] Eisebitt S, Lüning J, Schlotter W, et al. Lenless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

    [40] Marchesini S, He H, Champman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 140101.

    [41] Gonsalves R A, Chidlaw R. Wavefront sensing by phase retrieval[C]. SPIE, 1979, 207: 32-39.

    [42] Guyon O. Limits of adaptive optics for high-contrast imaging[J]. The Astrophysical Journal, 2005, 629(1): 592-614.

    [43] Zuo J M, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624): 1419-1421.

    [44] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 2005, 30(8): 833-835.

    [45] Zhang Jingjuan, Shi Yishi, Situ Guohai. A survey on optical information hiding[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(3): 289-296.

    [46] Shi Y S, Situ G H, Zhang J J. Multiple-image hiding in the Fresnel domain[J]. Optics Letters, 2007, 32(13): 1914-1916.

    [47] Fienup J R, Wacherman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 1986, 3(11): 1897-1907.

    [48] Lu G, Zhang Z, Francis T S, et al. Pendulum iterative algorithm for phase retrieval from modulus data[J]. Optical Engineering, 1994, 33(2): 548-555.

    [49] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

    [50] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

    [51] Faulkner H M L, Rodenburg J M. Movable aperture lenless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    [52] Li P, Batey D, Edo T, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158: 1-7.

    [53] Fu J, Li P. A general phase retrieval algorithm based on a ptychographical iterative engine for coherent diffractive imaging[J]. Chinese Physics B, 2013, 22(1): 014024.

    [54] Marrison J, Raty L, Marriott P, et al. Ptychography-A label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 2013, 3: 2369.

    [55] Pan X C, Veetil S P, Liu C, et al. High-contrast imaging for weakly diffracting specimens in coherent diffraction imaging[J]. Chinese Optics Letters, 2013, 11(2): 021103.

    [56] Shi Y S, Wang Y L, Zhang S G. Generalized ptychography with diverse probes[J]. Chinese Physics Letters, 2013, 30(5): 054203.

    [57] Wang Dong, Ma Yingjun, Liu Quan, et al. Experimental study on multi-wavelength ptychographic imaging in visible light band[J]. Acta Physica Sinica, 2015, 64(8): 084203.

    [58] Wang Y L, Li T, Gao Q K, et al. Application of diffractive optical elements for controlling the light beam in ptychography[J]. Optical Engineering, 2013, 52(9): 091720.

    [59] Wang Yali, Shi Yishi, Li Tuo, et al. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band[J]. Acta Physica Sinica, 2013, 62(6): 064206.

    [60] Maiden A M, Humphry M J, Zhang F C, et al. Superresolution imaging via ptychography[J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

    [61] Maiden M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

    [62] Godden T M, Suman R, Humphry M J, et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.

    [63] Pan An, Zhang Xiaofei, Wang Bin, et al. Experimental study on three-dimensional ptychography for thick sample[J]. Acta Physics Sinica, 2016, 65(1): 014204.

    [64] Chen Wen, Jiang Zhilong, Liu Cheng, et al. Depth resolved imaging by 3PIE with dual-beam illumination[J]. Acta Optica Sinica, 2016, 36(8): 0811002.

    [65] Shi Y, Li T, Wang Y, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9): 1425-1427.

    [66] Shi Y, Wang Y, Li T, et al. Ptychographical imaging algorithm with a single random phase encoding[J]. Chinese Physics Letters, 2013, 30(7): 074203.

    [67] Claus D, Robinson D J, Chetwynd D G, et al. Dual wavelength optical metrology using ptychography[J]. Journal of Optics, 2013, 15(3): 035702.

    [68] Claus D, Maiden A M, Zhang F, et al. Quantitative phase contrast optimised cancerous cell differentiation via ptychography[J]. Optics Express, 2012, 20(9): 9911-9918.

    [69] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.

    [70] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

    [71] Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3(2): 730.

    [72] Holler M, Diaz A, Guizar-sicairos M, et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 2014, 4: 3857.

    [73] Wang H, Liu C, Pan X, et al. The application of ptychography in the field of high power laser[C]. SPIE, 2015, 9255: 925534.

    [74] Zheng Chen, He Xiaoliang, Liu Cheng, et al. A study on the influence of the axial distance error to the image quality of the ptychographic iterative engine[J]. Acta Optica Sinica, 2014, 34(10): 1011003.

    [75] Wang Baosheng, Gao Shumei, Wang Jicheng, et al. Influence of charge coupled device saturation on PIE imaging[J]. Acta Optica Sinica, 2013, 33(6): 0611001.

    [76] Liu Cheng, Pan Xingchen, Zhu Jianqiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18): 184204.

    [77] Pan X, Liu C, Zhu J. Single shot ptychographical iterative engine based on multi-beam illumination[J]. Applied Physics Letters, 2013, 103(17): 171105.

    [78] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

    [79] Zheng G, Ou X, Horstmeyer R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy[J]. Optics Express, 2013, 21(13): 15131-15143.

    [80] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.

    [81] Zheng G. Breakthroughs in Photonics 2013: Fourier ptychographic imaging[J]. IEEE Photonics Journal, 2014, 6(2): 1-7.

    [82] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26): 33822-33835.

    [83] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2): 26010.

    [84] Zheng G, Ou X, Yang C.0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 2013, 5(1): 1-8.

    [85] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2): 574-579.

    [86] Xie Zongliang, Ma Haotong, Ren Ge, et al. Research on the key parameters of aperture-scanning Fourier ptychography[J]. Acta Optica Sinica, 2015, 35(10): 1011002.

    [87] Kuang C, Ma Y, Zhou R, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(21): 26999-27010.

    [88] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: Principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.

    [89] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599.

    [90] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2): 104-111.

    [91] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5): 1326-1329.

    [92] Tian L, Liu Z, Yeh L, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10): 904-911.

    [93] Chung J, Lu H, Ou X, et al. Wide-field Fourier ptychographic microscopy using laser illumination source[J]. Biomedical Optics Express, 2016, 7(11): 4787-4802.

    [94] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

    [95] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.

    [96] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.

    [97] Chakrova N, Heintzmann R, Rieger B, et al. Studying different illumination patterns for resolution improvement in fluorescence microscopy[J]. Optics Express, 2015, 23(24): 31367-31383.

    [98] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4): 1336-1350.

    [99] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14): 15765-15781.

    [100] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23): 6648-6651.

    [101] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4): 4856-4866.

    [102] Hoppe W. Diffraction in inhomogeneous primary wave fields. 1. Principle of phase determination from electron diffraction interference[J]. Acta Crystallographica Section A, 1969, 25: 495-501.

    [103] Hoppe W, Strube G. Diffraction inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences[J]. Acta Crystallographica Section A, 1969, 25: 502-507.

    [104] Hoppe W. Diffraction in homogeneous primary wave fields. 3. Amplitude and phase determination for nonperiodic objects[J]. Acta Crystallographica Section A, 1969, 25: 508-514.

    [105] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150(7): 87-184.

    [106] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

    [107] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

    [108] Sang X, LeBeau J M. Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge[J]. Ultramicroscopy, 2014, 138: 28-35.

    [109] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11): 13592-13606.

    [110] Beckers M, Senkbeil T, Gorniak T, et al. Drift correction in ptychographic diffractive imaging[J]. Ultramicoscopy, 2013, 126: 44-47.

    [111] Hurst A C, Edo T B, Walther T, et al. Probe position recovery for ptychographical imaging[C]. Journal of Physics: Conference Series, 2010, 241: 012004.

    [112] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.

    [113] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

    [114] Waller L. Phase imaging with partially coherent light[C]. SPIE, 2013, 8589: 85890K.

    [115] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

    [116] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicoscopy, 2014, 138: 13-21.

    [117] Pan An, Wang Dong, Shi Yishi, et al. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination[J]. Acta Physica Sinica, 2016, 65(12): 124201.

    [118] Deng J, Nashed Y S, Chen S, et al. Continuous motion scan ptychography: Characterization for increased speed in coherent X-ray imaging[J]. Optics Express, 2015, 23(5): 5438-5451.

    [119] Deng J, Vine D J, Chen S, et al. Opportunities and limitations for combined fly-scan ptychography and fluorescence microscopy[C]. SPIE, 2015, 9592: 95920U.

    [120] Li P, Batey D J, Edo T B, et al. Multiple mode X-ray ptychography using a lens and a fixed diffuser optic[J]. Journal of Optics, 2016, 18(5): 054008.

    [121] Li P, Edo T B, Batey D J, et al. Breaking ambiguities in mixed state ptychography[J]. Optics Express, 2016, 24(8): 9038-9052.

    [122] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10): 1263-1275.

    [123] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 2015, 3(1): 9-14.

    [124] Sidorenko P, Pauwels E, Sabach S, et al. Single-shot ptychography & sparsity-based subwavelength ptychography[C]. Frontiers in Optics, 2015.

    [125] Colomb T, Dahlgren P, Beghuin D, et al. Polarization imaging by use of digital holograohy[J]. Applied Optics, 2002, 41(1): 27-37.

    [126] Kühn J, Colomb T, Montfort F, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition[J]. Optics Express, 2007, 15(12): 7231-7242.

    [127] Zhang J, Wang Z, Li T, et al. 3D object hiding using three-dimensional ptychography[J]. Journal of Optics, 2016, 18(9): 095701.

    [128] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

    [129] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1): 338-358.

    [130] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5): 6171-6080.

    [131] Yeh L, Dong J, Zhong J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26): 33214-33240.

    [132] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5): 053044.

    [133] Candes E J, Li X, Soltanolkotabi M. Phase retrieval via Wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2015, 61(4): 1985-2007.

    [134] Sun Jiasong, Zhang Yuzhen, Chen Qian, et al. Fourier ptychographic microscopy (FPM): Theory, advances, and applications[J]. Acta Optica Sinica, 2016, 36(10): 1026009.

    [135] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

    [136] Bian L, Suo J, Chung J, et al. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient[J]. Scientific Reports, 2016, 6: 27384.

    [137] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

    [138] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6): 1757-1767.

    [139] Dong S, Bian Z, Shiradkar R, et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 2014, 22(5): 5455-5464.

    [140] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403.

    [141] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate[J]. Science, 1982, 217(4566): 1252-1255.

    [142] Wilson T. Confocal microscopy[M]. London: Academic Press, 1990: 1-64.

    [143] Pawley J. Handbook of biological confocal microscopy[M]. [S.l.]: Springer, 2010.

    [144] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

    [145] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

    [146] Heintzmann R, Gustafsson M G L. Subdiffraction resolution in continuous samples[J]. Nature Photonics, 2009, 3(7): 362-364.

    [147] Kner P, Chhun B B, Griffis E R, et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 2009, 6(5): 339-342.

    [148] Jost A, Heintzmann R. Superresolution multidimensional imaging with structured illumination microscopy[J]. Annual Review of Materials Research, 2013, 43(1): 261-282.

    [149] Hoffman Z R, DiMarzio C A. Structured illumination microscopy using random intensity incoherent reflectance[J]. Journal of Biomedical Optics, 2013, 18(6): 061216.

    [150] Dong S, Guo K, Jiang S, et al. Recovering higher dimensional image data using multiplexed structured illumination[J]. Optics Express, 2015, 23(23): 30393-30398.

    [151] Dong S, Nanda P, Guo K, et al. Incoherent Fourier ptychographic photography using structured light[J]. Photonics Research, 2015, 3(1): 19-23.

    [152] Min J, Jang J, Keum D, et al. Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery[J]. Scientific Reports, 2013, 3: 2075.

    [153] Ayuk R, Giovannini H, Jost A, et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm[J]. Optics Letters, 2013, 38(22): 4723-4726.

    [154] Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6(5): 312-315.

    [155] Qian J, Lei M, Dan D, et al. Full-color structured illumination optical sectioning microscopy[J]. Scientific Reports, 2015, 5: 14513.

    [156] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3: 1116.

    [157] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.

    [158] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.

    Pan An, Zhang Yan, Zhao Tianyu, Wang Zhaojun, Dan Dan, Shi Yishi, Yao Baoli. Quantitative Phase Microscopy Imaging Based on Ptychography[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40001
    Download Citation