• Photonics Research
  • Vol. 12, Issue 4, 821 (2024)
Wei Shi, Yingchuan He, Jianlin Wang, Lulu Zhou, Jianwei Chen, Liwei Zhou, Zeyu Xi, Zhen Wang, Ke Fang, and Yiming Li*
Author Affiliations
  • Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.514414 Cite this Article Set citation alerts
    Wei Shi, Yingchuan He, Jianlin Wang, Lulu Zhou, Jianwei Chen, Liwei Zhou, Zeyu Xi, Zhen Wang, Ke Fang, Yiming Li. Aberration correction for deformable-mirror-based remote focusing enables high-accuracy whole-cell super-resolution imaging[J]. Photonics Research, 2024, 12(4): 821 Copy Citation Text show less
    References

    [1] L. Schermelleh, A. Ferrand, T. Huser. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72-84(2019).

    [2] M. Lelek, M. T. Gyparaki, G. Beliu. Single-molecule localization microscopy. Nat. Rev. Methods Primers, 1, 39(2021).

    [3] B. Huang, W. Wang, M. Bates. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [4] F. Huang, G. Sirinakis, E. S. Allgeyer. Ultra-high resolution 3D imaging of whole cells. Cell, 166, 1028-1040(2016).

    [5] S. Liu, H. Huh, S. H. Lee. Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens. Annu. Rev. Biomed. Eng., 22, 155-184(2020).

    [6] E. Betzig, G. H. Patterson, R. Sougrat. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [7] S. T. Hess, T. P. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [8] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-795(2006).

    [9] B. Huang, S. A. Jones, B. Brandenburg. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods, 5, 1047-1052(2008).

    [10] A. M. Rozario, A. Morey, C. Elliott. 3D single molecule super-resolution microscopy of whole nuclear lamina. Front. Chem., 10, 863610(2022).

    [11] F. Xu, D. Ma, K. P. MacPherson. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval. Nat. Methods, 17, 531-540(2020).

    [12] M. F. Juette, T. J. Gould, M. D. Lessard. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods, 5, 527-529(2008).

    [13] B. Hajj, J. Wisniewski, M. El Beheiry. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. Proc. Natl. Acad. Sci. USA, 111, 17480-17485(2014).

    [14] A. Aristov, B. Lelandais, E. Rensen. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nat. Commun., 9, 2409(2018).

    [15] E. Nehme, D. Freedman, R. Gordon. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods, 17, 734-740(2020).

    [16] S. Fu, W. Shi, T. Luo. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging. Nat. Methods, 20, 459-468(2023).

    [17] S. Fu, M. Li, L. Zhou. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging. Opt. Lett., 47, 3031-3034(2022).

    [18] Q. Zhang, Q. Hu, C. Berlage. Adaptive optics for optical microscopy. Biomed. Opt. Express, 14, 1732-1756(2023).

    [19] S. Y. Kang, M. Duocastella, C. B. Arnold. Variable optical elements for fast focus control. Nat. Photon., 14, 533-542(2020).

    [20] V. Navikas, A. C. Descloux, K. S. Grussmayer. Adaptive optics enables multimode 3D super-resolution microscopy via remote focusing. Nanophotonics, 10, 2451-2458(2021).

    [21] Z. Qin, Z. She, C. Chen. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat. Biotechnol., 40, 1663-1671(2022).

    [22] M. Zurauskas, O. Barnstedt, M. Frade-Rodriguez. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed. Opt. Express, 8, 4369-4379(2017).

    [23] J. Cui, R. Turcotte, N. J. Emptage. Extended range and aberration-free autofocusing via remote focusing and sequence-dependent learning. Opt. Express, 29, 36660-36674(2021).

    [24] M. Bathe-Peters, P. Annibale, M. J. Lohse. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser. Opt. Express, 26, 2359-2368(2018).

    [25] J. Basumatary, N. Baro, P. Joshi. Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging. Commun. Biol., 6, 1050(2023).

    [26] H. Dibaji, A. K. N. Shotorban, M. Habibi. Axial de-scanning using remote focusing in the detection arm of lighft-sheet microscopy. bioRxiv(2023).

    [27] P. Zhang, D. Ma, X. Cheng. Deep learning-driven adaptive optics for single-molecule localization microscopy. Nat. Methods, 20, 1748-1758(2023).

    [28] R. P. J. Nieuwenhuizen, K. A. Lidke, M. Bates. Measuring image resolution in optical nanoscopy. Nat. Methods, 10, 557-562(2013).

    [29] J. Antonello. Interferometric calibration of a deformable mirror(2020).

    [30] Y. Shechtman, S. J. Sahl, A. S. Backer. Optimal point spread function design for 3D imaging. Phys. Rev. Lett., 113, 133902(2014).

    [31] Y. M. Li, M. Mund, P. Hoess. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods, 15, 367-369(2018).

    [32] Y. Li, W. Shi, S. Liu. Global fitting for high-accuracy multi-channel single-molecule localization. Nat. Commun., 13, 3133(2022).

    [33] J. V. Thevathasan, M. Kahnwald, K. Cieslinski. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods, 16, 1045-1053(2019).

    [34] J. Ries. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods, 17, 870-872(2020).

    [35] Y. M. Li, E. Buglakova, Y. D. Zhang. Accurate 4Pi single-molecule localization using an experimental PSF model. Opt. Lett., 45, 3765-3768(2020).

    [36] J. Y. Wang, E. S. Allgeyer, G. Sirinakis. Implementation of a 4Pi-SMS super-resolution microscope. Nat. Protoc., 16, 677-727(2021).

    [37] S. Liu, J. Chen, J. Hellgoth. Universal inverse modelling of point spread functions for SMLM localization and microscope characterization. bioRxiv(2023).

    [38] M. E. Siemons, N. A. K. Hanemaaijer, M. H. P. Kole. Robust adaptive optics for localization microscopy deep in complex tissue. Nat. Commun., 12, 3407(2021).

    [39] S. Park, Y. Jo, M. Kang. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish. Nat. Commun., 14, 4185(2023).

    [40] J. Deschamps, J. Ries. EMU: reconfigurable graphical user interfaces for Micro-Manager. BMC Bioinform., 21, 456(2020).

    [41] H. Pinkard, N. Stuurman, I. E. Ivanov. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat. Methods, 18, 226-228(2021).

    [42] https://github.com/Li-Lab-SUSTech/FD-DeepLoc. https://github.com/Li-Lab-SUSTech/FD-DeepLoc

    [43] https://github.com/ries-lab/uiPSF. https://github.com/ries-lab/uiPSF

    [44] Y. N. Wang, J. Schnitzbauer, Z. Hu. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt. Express, 22, 15982-15991(2014).

    [45] Y. Zhang, L. K. Schroeder, M. D. Lessard. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat. Methods, 17, 225-231(2020).

    [46] https://doi.org/10.5281/zenodo.10580127. https://doi.org/10.5281/zenodo.10580127

    Wei Shi, Yingchuan He, Jianlin Wang, Lulu Zhou, Jianwei Chen, Liwei Zhou, Zeyu Xi, Zhen Wang, Ke Fang, Yiming Li. Aberration correction for deformable-mirror-based remote focusing enables high-accuracy whole-cell super-resolution imaging[J]. Photonics Research, 2024, 12(4): 821
    Download Citation