• Photonics Research
  • Vol. 8, Issue 9, 1441 (2020)
Han Cui1、2、†, Yun Wang1、†, Lirong Qiu1、†, Shucheng Li1, Jonathan M. Cooper2, and Weiqian Zhao1、*
Author Affiliations
  • 1Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
  • show less
    DOI: 10.1364/PRJ.394537 Cite this Article Set citation alerts
    Han Cui, Yun Wang, Lirong Qiu, Shucheng Li, Jonathan M. Cooper, Weiqian Zhao. Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy[J]. Photonics Research, 2020, 8(9): 1441 Copy Citation Text show less
    References

    [1] P. Kun, G. Kukucska, G. Dobrik, J. Koltai, J. Kürti, L. P. Biró, L. Tapasztó, P. Nemes-Incze. Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. npj 2D Mater. Appl., 3, 11(2019).

    [2] T. Ukmar-Godec, L. Bertinetti, J. W. Dunlop, A. Godec, M. A. Grabiger, A. Masic, H. Nguyen, I. Zlotnikov, P. Zaslansky, D. Faivre. Materials nanoarchitecturing via cation–mediated protein assembly: making limpet teeth without mineral. Adv. Mater., 29, 1701171(2017).

    [3] X. Zhou, X. Hu, B. Jin, J. Yu, K. Liu, H. Li, T. Zhai. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci., 5, 1800478(2018).

    [4] G. J. Puppels, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, T. M. Jovin. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature, 347, 301-303(1990).

    [5] N. Altangerel, G. O. Ariunbold, C. Gorman, M. H. Alkahtani, E. J. Borrego, D. Bohlmeyer, P. Hemmer, M. V. Kolomiets, J. S. Yuan, M. O. Scully. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. USA, 114, 3393-3396(2017).

    [6] S. Pal, A. Ray, C. Andreou, Y. Zhou, T. Rakshit, M. Wlodarczyk, M. Maeda, R. Toledo-Crow, N. Berisha, J. Yang, H. Hsu, A. Oseledchyk, J. Mondal, S. Zou, M. F. Kircher. DNA-enabled rational design of fluorescence-Raman, bimodal nanoprobes for cancer imaging and therapy. Nat. Commun., 10, 1926(2019).

    [7] M. Y. Huang, H. G. Yan, T. F. Heinz, J. Hone. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett., 10, 4074-4079(2010).

    [8] D. R. Klein, D. MacNeill, Q. Song, D. T. Larson, S. Fang, M. Xu, R. A. Ribeiro, P. C. Canfield, E. Kaxiras, R. Comin, P. Jarillo-Herrero. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys., 15, 1255-1260(2019).

    [9] W. Dai, F. Shao, J. Szczerbiński, R. McCaffrey, R. Zenobi, Y. Jin, A. D. Schlüter, W. Zhang. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem., 55, 213-217(2016).

    [10] T. Wilson, A. R. Carlini. Three-dimensional imaging in confocal imaging systems with finite sized detectors. J. Microsc., 149, 51-66(1988).

    [11] R. D. Frankel. Dipole-like backscatter stimulated Raman scattering for in vivo imaging. J. Raman Spectrosc., 45, 764-772(2014).

    [12] K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, S. Kawata. Raman microscopy for dynamic molecular imaging of living cells. J. Biomed. Opt., 13, 044027(2008).

    [13] K. Watanabe, A. F. Palonpon, N. I. Smith, L. D. Chiu, A. Kasai, H. Hashimoto, S. Kawata, K. Fujita. Structured line illumination Raman microscopy. Nat. Commun., 6, 10095(2015).

    [14] L. Duponchela, P. Milanfar, C. Ruckebusch, J. Huvenne. Super-resolution and Raman chemical imaging: from multiple low resolution images to a high resolution image. Anal. Chim. Acta., 607, 168-175(2008).

    [15] J. P. Smith, F. C. Smith, J. Ottaway, A. E. Krull-Davatzes, B. M. Simonson, B. P. Glass, K. S. Booksh. Raman microspectroscopic mapping with multivariate curve resolution-alternating least squares (MCR-ALS) applied to the high-pressure polymorph of titanium dioxide, TiO2-II. Appl. Spectrosc., 71, 1816-1833(2017).

    [16] R. W. Havener, A. W. Tsen, H. C. Choi, J. Park. Laser-based imaging of individual carbon nanostructures. NPG Asia Mater., 3, 91-99(2011).

    [17] W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science, 338, 1317-1321(2012).

    [18] H. J. Cho, K. W. Oh, C. H. Ahn, P. Boolchand, T.-C. Nam. Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering. IEEE Trans. Magn., 37, 2749-2751(2001).

    [19] P. J. Caspers, G. W. Lucassen, G. J. Puppels. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys. J., 85, 572-580(2003).

    [20] M. Anderson. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett., 76, 3130-3132(2000).

    [21] F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Claudio Andreani, E. Di Fabrizio. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol., 5, 67-72(2010).

    [22] N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata. Metallized tip amplification of near-field Raman scattering. Opt. Commun., 183, 333-336(2000).

    [23] J. Toporski, T. Dieing, T. Dieing, O. Hollricher. Resolution and performance of 3D confocal Raman imaging systems. Confocal Raman Microscopy, 121-153(2018).

    [24] N. Anderson, A. Hartschuh, S. Cronin, L. Novotny. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc., 127, 2533-2537(2005).

    [25] J. Stadler, T. Schmid, R. Zenobi. Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett., 10, 4514-4520(2010).

    [26] T. Yano, P. Verma, Y. Saito, T. Ichimura, S. Kawata. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometers. Nat. Photonics, 3, 473-477(2009).

    [27] S. Jiang, Y. Zhang, R. Zhang, C. Hu, M. Liao, Y. Luo, J. Yang, Z. C. Dong, J. G. Hou. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol., 10, 865-869(2015).

    [28] W. Q. Zhao, H. Cui, L. R. Qiu, Y. Wang. Laser differential confocal mapping-spectrum microscopic imaging method and device. U.S. patent(2015).

    [29] B. Su, W. Jin. POCS-MPMAP based super-resolution image restoration. Acta Photon. Sin., 32, 502-504(2003).

    [30] H. Cui, W. Zhao, Y. Wang, Y. Fan, L. Qiu, K. Zhu. Improving spatial resolution of confocal Raman microscopy by super-resolution image restoration. Opt. Express, 24, 10767-10776(2016).

    [31] V. T. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg, S. M. Spearing. Micro-Raman measurement of bending stresses in micromachined silicon flexures. J. Microelectromech. Syst., 12, 779-787(2003).

    [32] F. Ureña, S. H. Olsen, J. P. Raskin. Raman measurements of uniaxial strain in silicon nanostructures. J. Appl. Phys., 114, 144507(2013).

    [33] E. Anastassakis, A. Cantarero, M. Cardona. Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B, 41, 7529-7535(1990).

    [34] W. A. Brantley. Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys., 44, 534-535(1973).

    Han Cui, Yun Wang, Lirong Qiu, Shucheng Li, Jonathan M. Cooper, Weiqian Zhao. Synchronous nanoscale topographic and chemical mapping by differential-confocal controlled Raman microscopy[J]. Photonics Research, 2020, 8(9): 1441
    Download Citation