• Photonics Insights
  • Vol. 2, Issue 1, R02 (2023)
Quan Xu1, Yuanhao Lang1, Xiaohan Jiang1, Xinyao Yuan1, Yuehong Xu1, Jianqiang Gu1, Zhen Tian1, Chunmei Ouyang1、*, Xueqian Zhang1、*, Jiaguang Han1、2、*, and Weili Zhang3、*
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin University of Electronic Technology, Guilin, China
  • 3School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, USA
  • show less
    DOI: 10.3788/PI.2023.R02 Cite this Article Set citation alerts
    Quan Xu, Yuanhao Lang, Xiaohan Jiang, Xinyao Yuan, Yuehong Xu, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xueqian Zhang, Jiaguang Han, Weili Zhang. Meta-optics inspired surface plasmon devices[J]. Photonics Insights, 2023, 2(1): R02 Copy Citation Text show less
    References

    [1] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131(2005).

    [2] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [3] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824(2003).

    [4] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189(2006).

    [5] J. M. Pitarke et al. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 70, 1(2007).

    [6] I. Epstein, Y. Tsur, A. Arie. Surface-plasmon wavefront and spectral shaping by near-field holography. Laser Photonics Rev., 10, 360(2016).

    [7] M. I. Stockman et al. Roadmap on plasmonics. J. Opt., 20, 043001(2018).

    [8] T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi. Surface-plasmon circuitry. Phys. Today, 61, 44(2008).

    [9] S. Kawata, Y. Inouye, P. Verma. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics, 3, 388(2009).

    [10] I. P. Radko et al. Plasmonic metasurfaces for waveguiding and field enhancement. Laser Photonics Rev., 3, 575(2009).

    [11] J. A. Schuller et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193(2010).

    [12] M. L. Juan, M. Righini, R. Quidant. Plasmon nano-optical tweezers. Nat. Photonics, 5, 349(2011).

    [13] P. Berini, I. De Leon. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics, 6, 16(2012).

    [14] J. J. Zhang et al. Integrated spoof plasmonic circuits. Sci. Bull., 64, 843(2019).

    [15] X. Q. Zhang et al. Terahertz surface plasmonic waves: a review. Adv. Photonics, 2, 014001(2020).

    [16] Z. Han, S. I. Bozhevolnyi. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys., 76, 016402(2013).

    [17] Y. Zhao, Y. M. Yang, H. B. Sun. Nonlinear meta-optics towards applications. PhotoniX, 2, 3(2021).

    [18] B. Sain, C. Meier, T. Zentgraf. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv. Photonics, 1, 024002(2019).

    [19] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737(2012).

    [20] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [21] R. Camacho-Morales et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv. Photonics, 3, 036002(2021).

    [22] Y. Chen, H. Ming. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens., 2, 37(2012).

    [23] K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267(2007).

    [24] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462(2008).

    [25] J. Y. Jing et al. Long-range surface plasmon resonance and its sensing applications: a review. Opt. Lasers Eng., 112, 103(2019).

    [26] Y. Zhao et al. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron., 142, 111505(2019).

    [27] C. L. Wong, M. Olivo. Surface plasmon resonance imaging sensors: a review. Plasmonics, 9, 809(2014).

    [28] A. Shalabney, I. Abdulhalim. Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev., 5, 571(2011).

    [29] P. Torma, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys., 78, 013901(2015).

    [30] W. B. Hou, S. B. Cronin. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater., 23, 1612(2013).

    [31] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788(2004).

    [32] K. Y. Bliokh et al. Colloquium: unusual resonators: plasmonics, metamaterials, and random media. Rev. Mod. Phys., 80, 1201(2008).

    [33] N. Liu, H. Giessen. Coupling effects in optical metamaterials. Angew. Chem. Int. Ed. Engl., 49, 9838(2010).

    [34] B. Luk’yanchuk et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707(2010).

    [35] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917(2012).

    [36] F. Monticone, A. Alu. Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys., 80, 036401(2017).

    [37] X. J. Fu, T. J. Cui. Recent progress on metamaterials: from effective medium model to real-time information processing system. Prog. Quantum Electron., 67, 100223(2019).

    [38] S. Ma, B. Yang, S. Zhang. Topological photonics in metamaterials. Photon. Insights, 1, R02(2022).

    [39] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).

    [40] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77(2001).

    [41] J. B. Pendry. A chiral route to negative refraction. Science, 306, 1353(2004).

    [42] J. Valentine et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376(2008).

    [43] S. Zhang et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett., 102, 023901(2009).

    [44] D. A. Roberts et al. Transformation-optical design of sharp waveguide bends and corners. Appl. Phys. Lett., 93, 251111(2008).

    [45] H. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 9, 387(2010).

    [46] J. J. Zhang, J. B. Pendry, Y. Luo. Transformation optics from macroscopic to nanoscale regimes: a review. Adv. Photonics, 1, 014001(2019).

    [47] L. Peng et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photonics, 13, 878(2019).

    [48] L. Peng et al. Spin Hall effect of transversely spinning light. Sci. Adv., 8, eabo6033(2022).

    [49] B. Yang et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun., 8, 97(2017).

    [50] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013(2018).

    [51] L. Xia et al. Observation of hourglass nodal lines in photonics. Phys. Rev. Lett., 122, 103903(2019).

    [52] Y. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622(2019).

    [53] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [54] H. Cheng et al. Emergent functionality and controllability in few-layer metasurfaces. Adv Mater., 27, 5410(2015).

    [55] P. Genevet, F. Capasso. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys., 78, 024401(2015).

    [56] H. T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [57] L. Zhang et al. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater., 4, 818(2016).

    [58] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139(2017).

    [59] H. H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [60] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [61] L. L. Huang, S. Zhang, T. Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169(2018).

    [62] A. Nemati et al. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [63] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [64] O. Quevedo-Teruel et al. Roadmap on metasurfaces. J. Opt., 21, 073002(2019).

    [65] S. L. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [66] Y. B. Zhang et al. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron. Adv., 3, 200002(2020).

    [67] J. Liu et al. Quantum photonics based on metasurfaces. Opto-Electron. Adv., 4, 200092(2021).

    [68] Q. Ma, T. J. Cui. Information metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [69] J. Kim et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics, 4, 024001(2022).

    [70] F. Aieta et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932(2012).

    [71] X. J. Ni et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [72] F. Aieta et al. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342(2015).

    [73] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [74] J. N. Chen et al. Metalens for coaxial double wavelength focusing. Chin. Opt. Lett., 18, 042401(2020).

    [75] H. G. Hao et al. A single-layer focusing metasurface based on induced magnetism. Prog. Electromagn. Res., 172, 77(2021).

    [76] N. I. Landy et al. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [77] H. Tao et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express, 16, 7181(2008).

    [78] Y. Z. Cheng et al. Ultrabroadband plasmonic absorber for terahertz waves. Adv. Opt. Mater., 3, 376(2015).

    [79] Y. Q. Ye, S. He. 90 degrees polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl. Phys. Lett., 96, 203501(2010).

    [80] L. Q. Cong et al. A perfect metamaterial polarization rotator. Appl. Phys. Lett., 103, 171107(2013).

    [81] L. Q. Cong et al. Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser Photonics Rev., 8, 626(2014).

    [82] R. H. Fan et al. Freely tunable broadband polarization rotator for terahertz waves. Adv. Mater., 27, 1201(2015).

    [83] C. Pfeiffer, A. Grbic. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Phys. Rev. Appl., 2, 044011(2014).

    [84] Y. H. Xu et al. Stereo metasurfaces for efficient and broadband terahertz polarization conversion. Adv. Funct. Mater., 32, 2207269(2022).

    [85] J. Huang et al. A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin. Opt. Lett., 18, 013102(2020).

    [86] M. Shalaev et al. High-efficiency all-dielectric metasurfaces for ultra-compact beam manipulation in transmission mode. Nano Lett., 15, 6261(2015).

    [87] S. Liu et al. convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci., 3, 1600156(2016).

    [88] Y. H. Xu et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 9, 3393(2020).

    [89] X. D. Cai et al. Dynamically controlling terahertz wavefronts with cascaded metasurfaces. Adv. Photonics, 3, 036003(2021).

    [90] S. Larouche et al. Infrared metamaterial phase holograms. Nat. Mater., 11, 450(2012).

    [91] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225(2014).

    [92] L. L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [93] X. J. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [94] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308(2015).

    [95] Q. Wang et al. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 5, 599(2018).

    [96] Q. Wang et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci. Rep., 6, 32867(2016).

    [97] D. D. Wen et al. Light field on a chip: metasurface-based multicolor holograms. Adv. Photonics, 3, 024001(2021).

    [98] E. Kretschmann, H. Raether. Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch., 23, 2135(1968).

    [99] A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A At. Nucl., 216, 398(1968).

    [100] R. Ritchie et al. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett., 21, 1530(1968).

    [101] Z. W. Cheng et al. Spoof surface plasmonics: principle, design, and applications. J. Phys. Condens. Matter, 34, 263002(2022).

    [102] Z. Gao et al. Spoof plasmonics: from metamaterial concept to topological description. Adv. Mater., 30, e1706683(2018).

    [103] J. Zhang et al. Designer surface plasmons enable terahertz cherenkov radiation. Prog. Electromagn. Res., 169, 25(2020).

    [104] T. V. Teperik et al. Huygens-Fresnel principle for surface plasmons. Opt. Express, 17, 17483(2009).

    [105] J. Gómez Rivas et al. Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B, 68, 201306(R)(2003).

    [106] J. G. Rivas et al. Propagation of surface plasmon polaritons on semiconductor gratings. Phys. Rev. Lett., 93, 256804(2004).

    [107] S. Savel’ev, V. Yampol’skii, F. Nori. Surface Josephson plasma waves in layered superconductors. Phys. Rev. Lett., 95, 187002(2005).

    [108] S. Savel’ev et al. Terahertz Josephson plasma waves in layered superconductors: spectrum, generation, nonlinear and quantum phenomena. Rep. Prog. Phys., 73, 026501(2010).

    [109] A. Tsiatmas et al. Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett., 97, 111106(2010).

    [110] A. Vakil, N. Engheta. Transformation optics using graphene. Science, 332, 1291(2011).

    [111] F. H. Koppens, D. E. Chang, F. J. Garcia de Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett., 11, 3370(2011).

    [112] Y. Li et al. Plasmonics of 2D nanomaterials: properties and applications. Adv. Sci., 4, 1600430(2017).

    [113] P. Tassin et al. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics, 6, 259(2012).

    [114] A. N. Grigorenko, M. Polini, K. S. Novoselov. Graphene plasmonics. Nat. Photonics, 6, 749(2012).

    [115] R. Zhao, T. Koschny, C. M. Soukoulis. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt. Express, 18, 14553(2010).

    [116] H. Jia et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148(2019).

    [117] H. Cheng et al. Vortical reflection and spiraling fermi arcs with Weyl metamaterials. Phys. Rev. Lett., 125, 093904(2020).

    [118] X. Zhang et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater., 25, 4567(2013).

    [119] Y. Guo et al. Classical and generalized geometric phase in electromagnetic metasurfaces. Photon. Insights, 1, R03(2022).

    [120] Q. Xu et al. A mechanically reprogrammable Pancharatnam-Berry metasurface for microwaves. Adv. Photonics, 4, 016002(2022).

    [121] L. Liu et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031(2014).

    [122] Y. Yang et al. Magnetic hyperbolic metasurface: concept, design, and applications. Adv. Sci., 5, 1801495(2018).

    [123] X. Wan et al. Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev., 8, 757(2014).

    [124] J. Duan et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep., 7, 1354(2017).

    [125] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847(2004).

    [126] A. P. Hibbins, B. R. Evans, J. R. Sambles. Experimental verification of designer surface plasmons. Science, 308, 670(2005).

    [127] C. R. Williams et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics, 2, 175(2008).

    [128] X. P. Shen, T. J. Cui. Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett., 102, 211909(2013).

    [129] H. C. Zhang et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev., 9, 83(2015).

    [130] Y. Zhang et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photonics Res., 6, 18(2018).

    [131] R. Wang et al. Diffraction-free bloch surface waves. ACS Nano, 11, 5383(2017).

    [132] R. Wang et al. Bloch surface waves confined in one dimension with a single polymeric nanofibre. Nat. Commun., 8, 14330(2017).

    [133] D. Zhang et al. Silver nanowires for reconfigurable Bloch surface waves. ACS Nano, 11, 10446(2017).

    [134] J. Chen et al. Strong polarization transformation of Bloch surface waves. Phys. Rev. Appl., 9, 024008(2018).

    [135] R. Wang et al. Two-dimensional photonic devices based on Bloch surface waves with one-dimensional grooves. Phys. Rev. Appl., 10, 024032(2018).

    [136] F. Gao et al. Probing topological protection using a designer surface plasmon structure. Nat. Commun., 7, 11619(2016).

    [137] M. Hafezi et al. Imaging topological edge states in silicon photonics. Nat. Photonics, 7, 1001(2013).

    [138] Q. Guo et al. Three dimensional photonic Dirac points in metamaterials. Phys. Rev. Lett., 119, 213901(2017).

    [139] Z. X. Xu et al. Near-field chiral excitation of universal spin-momentum locking transport of edge waves in microwave metamaterials. Adv. Photonics, 4, 046004(2022).

    [140] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [141] Z. Lan et al. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys., 9, 100076(2022).

    [142] I. P. Radko et al. Efficient unidirectional ridge excitation of surface plasmons. Opt. Express, 17, 7228(2009).

    [143] Y. Liu et al. Compact magnetic antennas for directional excitation of surface plasmons. Nano Lett., 12, 4853(2012).

    [144] F. J. Rodriguez-Fortuno et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328(2013).

    [145] Q. B. Jiang et al. Directional and singular surface plasmon generation in chiral and achiral nanostructures demonstrated by leakage radiation microscopy. ACS Photonics, 3, 1116(2016).

    [146] I. S. Sinev et al. Chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser Photonics Rev., 11, 1700168(2017).

    [147] S. Hunsche et al. THz near-field imaging. Opt. Commun., 150, 22(1998).

    [148] Y. Gorodetski et al. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett., 101, 043903(2008).

    [149] W. Chen et al. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett., 10, 2075(2010).

    [150] H. Kim et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett., 10, 529(2010).

    [151] A. E. Klein et al. Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system. Nano Lett., 14, 5010(2014).

    [152] F. Keilmann, R. Hillenbrand. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. A Math. Phys. Eng. Sci., 362, 787(2004).

    [153] N. Ocelic, A. Huber, R. Hillenbrand. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett., 89, 101124(2006).

    [154] H. T. Chen et al. Identification of a resonant imaging process in apertureless near-field microscopy. Phys. Rev. Lett., 93, 267401(2004).

    [155] H. G. von Ribbeck et al. Spectroscopic THz near-field microscope. Opt. Express, 16, 3430(2008).

    [156] E. Ostrovsky et al. Nanoscale control over optical singularities. Optica, 5, 283(2018).

    [157] T. L. Cocker et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics, 7, 620(2013).

    [158] S. Liu, M. Wolf, T. Kumagai. Plasmon-assisted resonant electron tunneling in a scanning tunneling microscope junction. Phys. Rev. Lett., 121, 226802(2018).

    [159] V. Jacobsen et al. Photoassisted spatially resolved STM measurements of dye-sensitized nanocrystalline TiO2 films. Phys. Rev. B, 75, 165325(2007).

    [160] J. C. Weeber et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B, 64, 045411(2001).

    [161] A. Kubo et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett., 5, 1123(2005).

    [162] A. Kubo, N. Pontius, H. Petek. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett., 7, 470(2007).

    [163] O. Schmidt et al. Time-resolved two photon photoemission electron microscopy. Appl. Phys. B, 74, 223(2014).

    [164] Y. A. Dai et al. Ultrafast nanofemto photoemission electron microscopy of vectorial plasmonic fields. MRS Bull., 46, 738(2021).

    [165] C. Lemke et al. Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices. Nano Lett., 13, 1053(2013).

    [166] T. J. Davis et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [167] G. Spektor et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science, 355, 1187(2017).

    [168] G. Spektor et al. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci. Adv., 7, eabg5571(2021).

    [169] G. Spektor et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold. Phys. Rev. X, 9, 021031(2019).

    [170] Y. Dai et al. Ultrafast microscopy of spin-momentum-locked surface plasmon polaritons. ACS Nano, 12, 6588(2018).

    [171] Y. N. Dai, H. Petek. Plasmonic spin-hall effect in surface plasmon polariton focusing. ACS Photonics, 6, 2005(2019).

    [172] Y. Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616(2020).

    [173] K. Frischwasser et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photonics, 15, 442(2021).

    [174] M. Kaplan et al. Photon-induced near-field electron microscopy of eukaryotic cells. Angew. Chem. Int. Ed. Engl., 56, 11498(2017).

    [175] L. Piazza et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun., 6, 6407(2015).

    [176] X. K. Wang et al. Terahertz near-field microscopy based on an air-plasma dynamic aperture. Light Sci. Appl., 11, 129(2022).

    [177] A. Nahata, W. Zhu. Electric field vector characterization of terahertz surface plasmons. Opt. Express, 15, 5616(2007).

    [178] D. Gacemi et al. THz surface plasmon modes on planar Goubau lines. Opt. Express, 20, 8466(2012).

    [179] S. Wang et al. Comprehensive imaging of terahertz surface plasmon polaritons. Opt. Express, 22, 16916(2014).

    [180] S. Wang et al. Observation and explanation of polarization-controlled focusing of terahertz surface plasmon polaritons. Phys. Rev. A, 91, 053812(2015).

    [181] X. Wang et al. Visualization of terahertz surface waves propagation on metal foils. Sci. Rep., 6, 18768(2016).

    [182] M. Wachter, M. Nagel, H. Kurz. Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution. Appl. Phys. Lett., 95, 1325(2009).

    [183] Y. H. Xu et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Appl. Phys. Lett., 107, 021105(2015).

    [184] X. Zang et al. Manipulating terahertz plasmonic vortex based on geometric and dynamic phase. Adv. Opt. Mater., 7, 1801328(2018).

    [185] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [186] J. Y. Yin et al. Microwave vortex-beam emitter based on spoof surface plasmon polaritons. Laser Photonics Rev., 12, 1600316(2018).

    [187] Z. Liao et al. Microwave-vortex-beam generation based on spoof-plasmon ring resonators. Phys. Rev. Appl, 13, 054013(2020).

    [188] B. Hecht et al. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett., 77, 1889(1996).

    [189] D. Hornauer, H. Kapitza, H. Raether. The dispersion relation of surface plasmons on rough surfaces. J. Phys. D, 7, L100(1974).

    [190] M. Gong, T. I. Jeon, D. Grischkowsky. THz surface wave collapse on coated metal surfaces. Opt. Express, 17, 17088(2009).

    [191] B. H. Ng et al. Spoof plasmon surfaces: a novel platform for THz sensing. Adv. Opt. Mater., 1, 543(2013).

    [192] B. H. Ng et al. Broadband terahertz sensing on spoof plasmon surfaces. ACS Photonics, 1, 1059(2014).

    [193] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333(2011).

    [194] Q. Xu et al. Efficient metacoupler for complex surface plasmon launching. Adv. Opt. Mater., 6, 1701117(2018).

    [195] C. Qu et al. A theoretical study on the conversion efficiencies of gradient meta-surfaces. Europhys. Lett., 101, 54002(2013).

    [196] A. Pors et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl., 3, e197(2014).

    [197] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [198] S. Liu et al. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Appl. Mater. Interfaces, 9, 21503(2017).

    [199] S. Liu et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light Sci. Appl., 7, 18008(2018).

    [200] X. Xie et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett., 126, 183902(2021).

    [201] L. L. Huang et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl., 2, e70(2013).

    [202] F. Monticone, N. M. Estakhri, A. Alu. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett., 110, 203903(2013).

    [203] A. Arbabi, A. Faraon. Fundamental limits of ultrathin metasurfaces. Sci. Rep., 7, 43722(2017).

    [204] W. Sun et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [205] Z. Wang et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).

    [206] C. Qu et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett., 115, 235503(2015).

    [207] D. Wang et al. Efficient generation of complex vectorial optical fields with metasurfaces. Light Sci. Appl., 10, 67(2021).

    [208] F. Lopez-Tejeira et al. Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys., 3, 324(2007).

    [209] S. B. Choi et al. Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator. Appl. Phys. Lett., 94, 063115(2009).

    [210] J. J. Chen et al. Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl. Phys. Lett., 97, 041113(2010).

    [211] A. Baron et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons. Nano Lett., 11, 4207(2011).

    [212] X. Huang, M. L. Brongersma. Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett., 13, 5420(2013).

    [213] K. Li et al. Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing. New J. Phys., 15, 113040(2013).

    [214] J. S. Liu et al. A submicron plasmonic dichroic splitter. Nat. Commun., 2, 525(2011).

    [215] Y. F. Zhang et al. Unidirectional launching of surface plasmons at the subwavelength scale. Appl. Phys. Lett., 105, 231101(2014).

    [216] X. Y. Song et al. Efficient unidirectional launching of surface plasmons by a cascade asymmetric-groove structure. Nanoscale, 8, 6777(2016).

    [217] J. Chen et al. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale, 6, 13487(2014).

    [218] H. Kim, B. Lee. Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics, 4, 153(2009).

    [219] X. W. Li et al. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit. Appl. Phys. Lett., 98, 251109(2011).

    [220] J. Yang et al. Broadband surface plasmon polariton directional coupling via asymmetric optical slot nanoantenna pair. Nano Lett., 14, 704(2014).

    [221] X. Zhang et al. Asymmetric excitation of surface plasmons by dark mode coupling. Sci. Adv., 2, e1501142(2016).

    [222] Q. Xu et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons. Sci. Rep., 6, 37861(2016).

    [223] H. Mühlenbernd et al. Amplitude and phase-controlled surface plasmon polariton excitation with metasurfaces. ACS Photonics, 3, 124(2016).

    [224] J. J. Chen et al. Polarization-free directional coupling of surface plasmon polaritons. Laser Photonics Rev., 9, 419(2015).

    [225] J. Yang et al. Broadband spin-controlled surface plasmon polariton launching and radiation via L-shaped optical slot nanoantennas. Laser Photonics Rev., 8, 590(2014).

    [226] J. Yang et al. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures. Opt. Lett., 40, 978(2015).

    [227] O. You et al. Versatile and tunable surface plasmon polariton excitation over a broad bandwidth with a simple metaline by external polarization modulation. Opt. Express, 24, 22061(2016).

    [228] D. Wintz et al. Anisotropic surface plasmon polariton generation using bimodal v-antenna based metastructures. ACS Photonics, 4, 22(2017).

    [229] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331(2013).

    [230] B. Chen et al. Plasmonic polarization nano-splitter based on asymmetric optical slot antenna pairs. Opt. Lett., 41, 4931(2016).

    [231] J. Han et al. Tailorable polarization-dependent directional coupling of surface plasmons. Adv. Funct. Mater., 32, 2111000(2022).

    [232] D. Tyagi, T. Y. Chen, C. B. Huang. Polarization-enabled steering of surface plasmons using crossed reciprocal nanoantennas. Laser Photonics Rev., 14, 2000076(2020).

    [233] Q. Xu et al. Polarization-controlled asymmetric excitation of surface plasmons. Optica, 4, 1044(2017).

    [234] Q. Xu et al. Coupling-mediated selective spin-to-plasmonic-orbital angular momentum conversion. Adv. Opt. Mater., 7, 1900713(2019).

    [235] T. Tanemura et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett., 11, 2693(2011).

    [236] D. Wintz et al. Holographic metalens for switchable focusing of surface plasmons. Nano Lett., 15, 3585(2015).

    [237] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [238] S. Mei et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 8, 2227(2016).

    [239] H. Ren et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805(2016).

    [240] Z. Yue et al. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film. Nat. Commun., 9, 4413(2018).

    [241] L. P. Du et al. On-chip photonic spin Hall lens. ACS Photonics, 6, 1840(2019).

    [242] C. Zhao, J. Zhang. Binary plasmonics: launching surface plasmon polaritons to a desired pattern. Opt. Lett., 34, 2417(2009).

    [243] J. Wang, C. Chen, Z. Sun. Creation of multiple on-axis foci and ultra-long focal depth for SPPs. Opt. Express, 25, 1555(2017).

    [244] C. Zhao, J. Zhang. Plasmonic demultiplexer and guiding. ACS Nano, 4, 6433(2010).

    [245] J. Lin et al. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave. Phys. Rev. Lett., 109, 093904(2012).

    [246] P. Genevet et al. Generation of two-dimensional plasmonic bottle beams. Opt. Express, 21, 10295(2013).

    [247] G. M. Lerman, A. Yanai, U. Levy. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett., 9, 2139(2009).

    [248] G. H. Yuan et al. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam. Nanotechnology, 23, 385204(2012).

    [249] S. S. Kou et al. On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl., 5, e16034(2016).

    [250] S. Wei et al. Toward broadband, dynamic structuring of a complex plasmonic field. Sci. Adv., 4, eaao0533(2018).

    [251] Z. Fang et al. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett., 11, 893(2011).

    [252] I. Epstein, A. Arie. Arbitrary bending plasmonic light waves. Phys. Rev. Lett., 112, 023903(2014).

    [253] I. Epstein, A. Arie. Dynamic generation of plasmonic bottle-beams with controlled shape. Opt. Lett., 39, 3165(2014).

    [254] I. Epstein, Y. Lilach, A. Arie. Shaping plasmonic light beams with near-field plasmonic holograms. J. Opt. Soc. Am. B, 31, 1642(2014).

    [255] I. Epstein et al. Generation of intensity-controlled two-dimensional shape-preserving beams in plasmonic lossy media. Optica, 3, 15(2016).

    [256] Y. J. Bao et al. Revealing the spin optics in conic-shaped metasurfaces. Phys. Rev. B, 95, 081406(R)(2017).

    [257] Q. Jiang et al. Bi-channel near and far-field optical vortex generator based on a single plasmonic metasurface. Photonics Res., 8, 986(2020).

    [258] P. Genevet et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotechnol., 10, 804(2015).

    [259] S. Y. Lee et al. Plasmonic meta-slit: shaping and controlling near-field focus. Optica, 2, 6(2015).

    [260] Y. Q. Zhang et al. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv. Opt. Mater., 7, 1900372(2019).

    [261] S. Wang et al. Metasurface lens for both surface plasmon polaritons and transmitted wave. Plasmonics, 12, 621(2016).

    [262] G. Spektor et al. Metafocusing by a metaspiral plasmonic lens. Nano Lett., 15, 5739(2015).

    [263] E. Prinz et al. Functional meta lenses for compound plasmonic vortex field generation and control. Nano Lett., 21, 3941(2021).

    [264] X. Zhang et al. Anomalous surface wave launching by handedness phase control. Adv. Mater., 27, 7123(2015).

    [265] Q. Tan et al. Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases. Nanoscale, 9, 4944(2017).

    [266] M. Wei et al. Multi-wavelength lenses for terahertz surface wave. Opt. Express, 25, 24872(2017).

    [267] Q. Xu et al. Polarization-controlled surface plasmon holography. Laser Photonics Rev., 11, 1600212(2017).

    [268] L. Chen et al. Polarization-independent wavefront manipulation of surface plasmons with plasmonic metasurfaces. Adv. Opt. Mater., 8, 2000868(2020).

    [269] Y. H. Lang et al. On-chip plasmonic vortex interferometers. Laser Photonics Rev., 16, 2200242(2022).

    [270] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [271] Y. H. Xu et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics, 6, 2933(2019).

    [272] S. Xiao et al. Flexible coherent control of plasmonic spin-Hall effect. Nat. Commun., 6, 8360(2015).

    [273] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [274] P. Coullet, L. Gil, F. Rocca. Optical vortices. Opt. Commun., 73, 403(1989).

    [275] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161(2011).

    [276] P. W. Milonni, R. W. Boyd. Momentum of light in a dielectric medium. Adv. Opt. Photonics, 2, 519(2010).

    [277] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343(2011).

    [278] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488(2012).

    [279] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994).

    [280] F. Kong et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun., 8, 14970(2017).

    [281] D. Gauthier et al. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [282] S. Ruschin, A. Leizer. Evanescent Bessel beams. J. Opt. Soc. Am. A, 15, 1139(1998).

    [283] S. Al-Awfi. Formation of a plasmonic surface optical vortex by evanescent Bessel light. Plasmonics, 8, 529(2012).

    [284] P. Shi et al. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. USA, 118, e2018816118(2021).

    [285] T. Ohno, S. Miyanishi. Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt. Express, 14, 6285(2006).

    [286] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796(2015).

    [287] S. Yang et al. Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett., 34, 3047(2009).

    [288] J. J. Miao et al. Plasmonic lens with multiple-turn spiral nano-structures. Plasmonics, 6, 235(2011).

    [289] W. Y. Tsai, J. S. Huang, C. B. Huang. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett., 14, 547(2014).

    [290] S. W. Cho et al. Coupling of spin and angular momentum of light in plasmonic vortex. Opt. Express, 20, 10083(2012).

    [291] P. Zilio et al. Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses. Opt. Lett., 37, 3234(2012).

    [292] Z. Mou et al. Uniform theory of plasmonic vortex generation based on nanoholes. Nanotechnology, 31, 455301(2020).

    [293] S. Y. Lee et al. Spin-direction control of high-order plasmonic vortex with double-ring distributed nanoslits. IEEE Photon. Technol. Lett., 27, 705(2015).

    [294] S. W. Moon et al. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation. Opt. Express, 27, 19119(2019).

    [295] B. Tang, B. Zhang, J. Ding. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits. Appl. Opt., 58, 833(2019).

    [296] X. Q. An et al. Arbitrary superposition of plasmonic orbital angular momentum states with nanostructures. Opt. Lett., 47, 2032(2022).

    [297] Z. Jin et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 1, 5(2021).

    [298] J. Ni et al. Multidimensional phase singularities in nanophotonics. Science, 374, eabj0039(2021).

    [299] X. Yuan et al. Tailoring spatiotemporal dynamics of plasmonic vortices. Opto-Electron. Adv., 6, 220133(2023).

    [300] Y. Yang et al. Deuterogenic plasmonic vortices. Nano Lett., 20, 6774(2020).

    [301] J. A. Hachtel et al. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light Sci. Appl., 8, 33(2019).

    [302] A. Aiello et al. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789(2015).

    [303] L. P. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650(2019).

    [304] Z. Shen et al. Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett., 37, 4627(2012).

    [305] Y. Zhang et al. A plasmonic spanner for metal particle manipulation. Sci. Rep., 5, 15446(2015).

    [306] Y. Zhang et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci. Appl., 10, 59(2021).

    [307] M. Lin et al. Photonic spin skyrmion with dynamic position control. ACS Photonics, 8, 2567(2021).

    [308] M. Wang et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight, 2, 12(2022).

    [309] Y. H. Bai et al. Plasmonic vortices: a review. J. Opt., 24, 084004(2022).

    [310] H. Ditlbacher et al. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett., 81, 1762(2002).

    [311] L. Feng et al. Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves. Appl. Phys. Lett., 91, 081101(2007).

    [312] S. H. Dong et al. Highly efficient wave-front reshaping of surface waves with dielectric metawalls. Phys. Rev. Appl., 9, 014032(2018).

    [313] L. Li et al. Plasmonic Airy beam generated by in-plane diffraction. Phys. Rev. Lett., 107, 126804(2011).

    [314] L. Li et al. Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett., 11, 4357(2011).

    [315] L. Li et al. Collimated plasmon beam: nondiffracting versus linearly focused. Phys. Rev. Lett., 110, 046807(2013).

    [316] J. Chen et al. Indefinite plasmonic beam engineering by in-plane holography. Sci. Rep., 6, 28926(2016).

    [317] Y. G. Chen, Y. H. Chen, Z. Y. Li. Direct method to control surface plasmon polaritons on metal surfaces. Opt. Lett., 39, 339(2014).

    [318] E. Devaux et al. Refractive micro-optical elements for surface plasmons: from classical to gradient index optics. Opt. Express, 18, 20610(2010).

    [319] A. Hohenau et al. Dielectric optical elements for surface plasmons. Opt. Lett., 30, 893(2005).

    [320] L. Feng et al. Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves. Appl. Phys. Lett., 93, 231105(2008).

    [321] D. Singh et al. Curved space plasmonic optical elements. Opt. Lett., 44, 5234(2019).

    [322] D. Weisman et al. Diffractive guiding of waves by a periodic array of slits. Phys. Rev. Lett., 127, 014303(2021).

    [323] Y. M. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).

    [324] A. A. High et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192(2015).

    [325] Y. H. Yang et al. Hyperbolic spoof plasmonic metasurfaces. NPG Asia Mater., 9, e428(2017).

    [326] V. N. Smolyaninova et al. Experimental observation of effective gravity and two-time physics in ferrofluid-based hyperbolic metamaterials. Adv. Photonics, 2, 056001(2020).

    [327] Y. Liu et al. Negative refraction in twisted hyperbolic metasurfaces. Nanophotonics, 11, 1977(2022).

    [328] Y. Liu et al. Simultaneous manipulation of electric and magnetic surface waves by topological hyperbolic metasurfaces. ACS Appl. Electron. Mater., 3, 4203(2021).

    [329] Y. Liu et al. Magnetic moire effects and two types of topological transition in a twisted-bilayer hyperbolic metasurface with double-split ring arrays. Opt. Express, 30, 36552(2022).

    [330] Y. Liu et al. Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photonics Res., 10, 2056(2022).

    [331] Y. Liu et al. Transformational plasmon optics. Nano Lett., 10, 1991(2010).

    [332] P. A. Huidobro et al. Transformation optics for plasmonics. Nano Lett., 10, 1985(2010).

    [333] T. Zentgraf et al. Plasmonic Luneburg and Eaton lenses. Nat. Nanotechnol., 6, 151(2011).

    [334] Y. B. Li et al. Diffraction-free surface waves by metasurfaces. Opt. Lett., 39, 5888(2014).

    [335] S. Xu et al. Broadband surface-wave transformation cloak. Proc. Natl. Acad. Sci. USA, 112, 7635(2015).

    [336] X. Q. Su et al. Gradient index devices for terahertz spoof surface plasmon polaritons. ACS Photonics, 7, 5305(2020).

    [337] Y. Tsur et al. Wavefront shaping of plasmonic beams by selective coupling. ACS Photonics, 4, 1339(2017).

    [338] Y. H. Chen et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci. Appl., 1, e26(2012).

    [339] Y. H. Chen et al. Holographic plasmonic lenses for surface plasmons with complex wavefront profile. Opt. Express, 21, 17558(2013).

    [340] M. S. Davis et al. Aperiodic nanoplasmonic devices for directional colour filtering and sensing. Nat. Commun., 8, 1347(2017).

    [341] A. Pham et al. Interference eraser experiment demonstrated with all-plasmonic which-path marker based on reverse spin Hall effect of light. ACS Photonics, 5, 1108(2018).

    [342] L. Du et al. Broadband chirality-coded meta-aperture for photon-spin resolving. Nat. Commun., 6, 10051(2015).

    [343] X. Y. Xiong et al. Surface plasmon mediated controllable spin-resolved transmission in meta-hole structures. Ann. Phys, 530, 1700364(2018).

    [344] L. Li et al. Plasmonic polarization generator in well-routed beaming. Light Sci. Appl., 4, e330(2015).

    [345] J. Chen et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett., 17, 5051(2017).

    [346] J. J. Xu et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes. Appl. Phys. Lett., 106, 021102(2015).

    [347] H. Su et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle. Laser Photonics Rev., 12, 1800010(2018).

    [348] W. K. Pan et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces. Nanophotonics, 11, 2025(2022).

    [349] H. Wei et al. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun., 2, 387(2011).

    [350] H. Wei et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett., 11, 471(2011).

    [351] Y. Fu et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett., 12, 5784(2012).

    [352] M. Cohen, Z. Zalevsky, R. Shavit. Towards integrated nanoplasmonic logic circuitry. Nanoscale, 5, 5442(2013).

    [353] S. M. Wang et al. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide. Nat. Commun., 7, 11490(2016).

    [354] Y. G. Sang et al. Broadband multifunctional plasmonic logic gates. Adv. Opt. Mater., 6, 1701368(2018).

    [355] M. Yuan et al. Terahertz spoof surface plasmonic logic gates. iScience, 23, 101685(2020).

    [356] Y. Meng et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl., 10, 235(2021).

    [357] R. Guo et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas. Sci. Adv., 3, e1700007(2017).

    [358] M. Thomaschewski et al. On-chip detection of optical spin-orbit interactions in plasmonic nanocircuits. Nano Lett., 19, 1166(2019).

    [359] H. Ren et al. Orbital-angular-momentum-controlled hybrid nanowire circuit. Nano Lett., 21, 6220(2021).

    [360] M. Thomaschewski et al. Plasmonic monolithic lithium niobate directional coupler switches. Nat. Commun., 11, 748(2020).

    [361] M. Thomaschewski, C. Wolff, S. I. Bozhevolnyi. High-speed plasmonic electro-optic beam deflectors. Nano Lett., 21, 4051(2021).

    [362] M. Thomaschewski et al. Plasmonic lithium niobate Mach-Zehnder modulators. Nano Lett., 22, 6471(2022).

    [363] C. Min et al. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [364] P. R. Huft et al. Holographic plasmonic nanotweezers for dynamic trapping and manipulation. Nano Lett., 17, 7920(2017).

    [365] H. G. Berry, G. Gabrielse, A. E. Livingston. Measurement of the Stokes parameters of light. Appl. Opt., 16, 3200(1977).

    [366] R. M. A. Azzam. Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light. Opt. Acta Int. J. Opt., 29, 685(2010).

    [367] J. P. B. Mueller, K. Leosson, F. Capasso. Ultracompact metasurface in-line polarimeter. Optica, 3, 42(2016).

    [368] K. Lee et al. Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev., 12, 1700297(2018).

    [369] A. Pors, S. I. Bozhevolnyi. Waveguide metacouplers for in-plane polarimetry. Phys. Rev. Appl., 5, 064015(2016).

    [370] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2, 716(2015).

    [371] F. Ding et al. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics, 4, 943(2017).

    [372] A. Espinosa-Soria et al. On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light. Nano Lett., 17, 3139(2017).

    [373] S. Wei, Z. Yang, M. Zhao. Design of ultracompact polarimeters based on dielectric metasurfaces. Opt. Lett., 42, 1580(2017).

    [374] X. Zhang et al. Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram. Optica, 6, 1190(2019).

    [375] A. Ma et al. Polarization detection using light’s orbital angular momentum. Adv. Opt. Mater., 8, 2000484(2020).

    [376] D. Wen et al. Metasurface for characterization of the polarization state of light. Opt. Express, 23, 10272(2015).

    [377] S. Hermon et al. Metasurface hologram for polarization measurement. Opt. Lett., 44, 4436(2019).

    [378] Y. Intaravanne, X. Z. Chen. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics, 9, 1003(2020).

    [379] S. Y. Fu et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    [380] Y. Guo et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci. Appl., 10, 63(2021).

    [381] P. Genevet et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun., 3, 1278(2012).

    [382] F. Zheng et al. Research status and prospects of orbital angular momentum technology in wireless communication. Prog. Electromagn. Res., 168, 113(2020).

    [383] F. Feng et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light Sci. Appl., 9, 95(2020).

    [384] X. Zhao et al. A compound phase-modulated beam splitter to distinguish both spin and orbital angular momentum. ACS Photonics, 7, 212(2019).

    [385] J. Chen et al. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev., 12, 1700331(2018).

    [386] K. Wang, D. M. Mittleman. Metal wires for terahertz wave guiding. Nature, 432, 376(2004).

    [387] N. Yu et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater., 9, 730(2010).

    [388] S. Ummethala et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics, 13, 519(2019).

    [389] Y. Salamin et al. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun., 10, 5550(2019).

    [390] H. Zeng et al. High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip. Nat. Photonics, 15, 751(2021).

    [391] M. Feng et al. Active metal–graphene hybrid terahertz surface plasmon polaritons. Nanophotonics, 11, 3331(2022).

    [392] Y. X. Zhang et al. Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling. Optica, 9, 1268(2022).

    [393] T. Zhang et al. On-chip THz dynamic manipulation based on tunable spoof surface plasmon polaritons. IEEE Electron Device Lett., 40, 1844(2019).

    [394] Y. Zhang et al. Ultrafast modulation of terahertz waves using on-chip dual-layer near-field coupling. Optica, 9, 1268(2022).

    [395] H. C. Zhang et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 3, 139(2015).

    [396] H. C. Zhang et al. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv. Mater. Technol., 2, 1600202(2017).

    [397] P. H. He et al. Active odd-mode-metachannel for single-conductor systems. Opto-Electron. Adv., 5, 210119(2022).

    [398] J. W. You et al. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [399] H. C. Zhang et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci. Appl., 9, 113(2020).

    [400] G.-B. Wu et al. Sideband-free space–time-coding metasurface antennas. Nat. Electron., 5, 808(2022).

    Quan Xu, Yuanhao Lang, Xiaohan Jiang, Xinyao Yuan, Yuehong Xu, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xueqian Zhang, Jiaguang Han, Weili Zhang. Meta-optics inspired surface plasmon devices[J]. Photonics Insights, 2023, 2(1): R02
    Download Citation