• Opto-Electronic Engineering
  • Vol. 47, Issue 7, 190580 (2020)
Chen Peng1、*, CaiXuanwei2, Zhao Dongdong1, Liang Ronghua1, and Guo Xinxin3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190580 Cite this Article
    Chen Peng, CaiXuanwei, Zhao Dongdong, Liang Ronghua, Guo Xinxin. Despeckling for side-scan sonar images based on adaptive block-matching and 3D filtering[J]. Opto-Electronic Engineering, 2020, 47(7): 190580 Copy Citation Text show less
    References

    [1] Blondel P. The Handbook of Sidescan Sonar[M]. Berlin: Springer, 2009: 1–6.

    [2] Ye X F, Li P, Deng Y Y. A side scan sonar image denoising algo-rithm based on compound of fuzzy weighted average and Kal-man filter[C]//Proceedings of 2012 IEEE International Confe-rence on Mechatronics and Automation, Chengdu, China, 2012: 720–724.

    [3] Devapal D, Kumar S S, Sethunadh R. Discontinuity adaptive SAR image despeckling using curvelet-based BM3D tech-nique[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2019, 17(3): 1950016.

    [4] Lee J S, Grunes M R, De Grandi G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 1999, 37(5): 2363–2373.

    [5] Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177.

    [6] Frost V S, Stiles J A, Shanmugan K S, et al. A model for radar images and its application to adaptive digital filtering of multip-licative noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, PAMI-4(2): 157–166.

    [7] Buades A, Coll B, Morel J M. Non-local means denoising[J]. Image Processing On Line, 2011, 1: 208–212.

    [8] Wang J, Guo Y W, Ying Y T, et al. Fast non-local algorithm for image denoising[C]//Proceedings of 2006 International Confe-rence on Image Processing, Atlanta, GA, USA, 2006: 1429–1432.

    [9] Li SW, Zhang B,Liu Z M, et al. Noise reduction for OCT images based on wave-atom thresholding algorithm[J]. Opto-Electronic Engineering, 2014, 41(7): 75–80.

    [10] Wang F, Chen M H, Gao N J, et al. OCT image speckle sparse noise reduction based on dictionary algorithm[J]. Op-to-Electronic Engineering, 2019, 46(6): 180572.

    [11] Lebrun M. An analysis and implementation of the BM3D image denoising method[J]. Image Processing On Line, 2012, 2: 175–213.

    [12] Gao J B, Chen Q, Blasch E. Image denoising in the presence of non-Gaussian, power-law noise[C]//Proceedings of 2012 IEEE National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 2012: 103–108.

    [13] Yang J Y, Zhang X, Yue H J, et al. IBM3D: integer BM3D for efficient image denoising[J]. Circuits, Systems, and Signal Processing, 2019, 38(2): 750–763.

    [14] Dabov K, Foi A, Katkovnik V, et al. BM3D image denoising with shape-adaptive principal component analysis[C]//Signal Processing with Adaptive Sparse Structured Representations (SPARS), Saint-Malo, France, 2009: 1–6.

    [15] Zhong H, Ma K, Zhou Y. Modified BM3D algorithm for image denoising using nonlocal centralization prior[J]. Signal Processing, 2015, 106: 342–347.

    [16] Zhao T T, Hoffman J, McNitt‐Gray M, et al. Ultra‐low‐dose CT image denoising using modified BM3D scheme tailored to data statistics[J]. Medical Physics, 2019, 46(1): 190–198.

    [17] Cheng W M, Zhu X, Chen X, et al. Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow[J]. IEEE Transactions on Medical Imaging, 2019, 38(7): 1726–1735.

    [18] Fan X J, Li Q W, Huang H, et al. Side-scan sonar image des-peckling based on block-matching and 3D filtering[J]. Journal of Image and Graphics, 2012, 17(1): 68–74.

    [19] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transac-tions on Image Processing, 2007, 16(8): 2080–2095.

    [20] James R, Supriya M H. Blind estimation of single look side scan sonar image from the observation model[J]. Procedia Computer Science, 2016, 93: 336–343.

    [22] Zhang X D, Wang H, Jiang M S, et al. Applications of saliency analysis in focus image fusion[J]. Opto-Electronic Engineering, 2017, 44(4): 435–441.

    [23] Piao Y R, Rong Z K, Zhang M, et al. Deep light-field-driven saliency detection from a single view[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 904–911.

    [24] Zhao J X, Cao Y, Fan D P, et al. Contrast prior and fluid pyramid integration for RGBD salient object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 3927–3936.

    [25] Zeng Y, Zhang P P, Lin Z, et al. Towards high-resolution salient object detection[C]//Proceedings of 2019 IEEE/CVF Internation-al Conference on Computer Vision, 2019: 7233–7242.

    [26] Fan D P,WangWG, Cheng M M, et al. Shifting more attention to video salient object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, 2019: 8554–8564.

    [27] Shen C, Huang X, Zhao Q. Predicting eye fixations on webpage with an ensemble of early features and high-level representa-tions from deep network[J]. IEEE Trans. Multimedia, 2015, 17(11): 2084–2093.

    [28] Itti L, Koch C, Niebur E. A model of saliency-based visual atten-tion for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259.

    [29] Perazzi F, Kr.henbhl P, Pritch Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]//2012 IEEE Con-ference on Computer Vision and Pattern Recognition, 2012: 733–740.

    [30] Zhao H W, He J S. Saliency detection method fused depth information based on Bayesian framework[J]. Opto-Electronic Engineering, 2018, 45(2): 170341.

    [31] Wei Y C, Wen F, Zhu WJ, et al. Geodesic saliency using back-ground priors[C]//Proceedings of the 12th European Conference on Computer Vision, 2012: 29–42.

    [32] Liu J J, Hou Q, Cheng M M, et al. A Simple Pooling-Based De-sign for Real-Time Salient Object Detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3917–3926.

    [33] Liu N, Han J W, Yang M H. PiCANet: Learning pixel-wise con-textual attention for saliency detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, 2018: 3089–3098.

    [34] Chen K, Pang J M, Wang J Q, et al. Hybrid task cascade for instance segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 4974–4983.

    [35] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Confe-rence on Computer Vision and Pattern Recognition, 2015: 3431–3440.

    [36] Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detec-tion[C]//Proceedings of 2013 IEEE Conference on Computer Vi-sion and Pattern Recognition, 2013: 1155–1162.

    [37] Li G B, Yu Y Z. Visual saliency based on multiscale deep fea-tures[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5455–5463.

    [38] Xi X Y, Luo Y K,Wang P, et al. Salient object detection based on an efficient end-to-end saliency regression network[J]. Neuro-computing, 2019, 323: 265–276.

    [39] Li Y, Hou X D, Koch C, et al. The secrets of salient object seg-mentation[C]//Proceedings of 2014 IEEE Conference on Com-puter Vision and Pattern Recognition, 2014: 280–287.

    [40] He X M, Zemel R S, Carreira-Perpinan M A. Multiscale condi-tional random fields for image labeling[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: II.

    [41] Wang L J, Lu H C, Wang YF, et al. Learning to detect salient objects with image-level supervision[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 136–145.

    [42] Fan D P, Cheng M M, Liu J J, et al. Salient objects in clutter: bringing salient object detection to the fore-ground[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 186–202.

    [43] Cheng M M, Mitra N J, Huang X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2015, 37(3): 569–582.

    [44] Cheng M M, Warrell J, Lin W Y, et al. Efficient salient region detection with soft image abstraction[C]//Proceedings of 2013 IEEE International Conference on Computer vision, 2013: 1529–1536.

    [45] Margolin R, Zelnik-Manor L, Tal A. How to evaluate foreground maps[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 248–255.

    [46] Fan D P, Cheng M M, Liu Y, et al. Structure-measure: a new way to evaluate foreground maps[C]//Proceedings of 2017 IEEE In-ternational Conference on Computer Vision, 2017: 4548–4557.

    [47] Fan D P, Gong C, Cao Y, et al. Enhanced-alignment measure for binary foreground map evaluation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 698–704.

    [48] Li G B, Yu Y Z. Deep contrast learning for salient object detec-tion[C]//Proceedings of 2016 IEEE Conference on Computer Vi-sion and Pattern Recognition, 2016: 478–487.

    [49] Hou Q B, Cheng M M, Hu XW, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3203–3212.

    [50] Liu N, Han J W. DHSNet: deep hierarchical saliency network for salient object detection[C]//Proceedings of 2018 IEEE Confe-rence on Computer Vision and Pattern Recognition, 2016: 678–686.

    [51] Zhang P P, Wang D, Lu H C, et al. Amulet: aggregating mul-ti-level convolutional features for salient object detec-tion[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 202–211.

    [52] Hu P, Shuai B, Liu J, et al. Deep level sets for salient object detection[C]//Proceedings of 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, 2016: 2300–2309.

    [53] Luo Z M, Mishra A, Achkar A, et al. Non-local deep features for salient object detection[C]//Proceedings of 2017 IEEE Confe-rence on Computer Vision and Pattern Recognition, 2017: 6609–6617.

    [54] Wang T T, Borji A, Zhang L H, et al. A stagewise refinement model for detecting salient objects in images[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 4039–4048.

    [55] Jiang H D, Wang J D, Yuan Z J, et al. Salient object detection: a discriminative regional feature integration ap-proach[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2083–2090.

    [56] Wang L Z, Wang L J, Lu H C, et al. Saliency detection with recurrent fully convolutional networks[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 825–841.

    Chen Peng, CaiXuanwei, Zhao Dongdong, Liang Ronghua, Guo Xinxin. Despeckling for side-scan sonar images based on adaptive block-matching and 3D filtering[J]. Opto-Electronic Engineering, 2020, 47(7): 190580
    Download Citation