• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516005 (2022)
Linling Tan1、2、3、*, Shuo Wang1、2、3, Gangjie Zhou1、2、3, Tiefeng Xu4, and Changgui Lin1、2、3
Author Affiliations
  • 1Laboratory of Infrared Material and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang , China
  • 2Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang , China
  • 3Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang , China
  • 4Ningbo Institute of Oceanography, Ningbo 315832, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516005 Cite this Article Set citation alerts
    Linling Tan, Shuo Wang, Gangjie Zhou, Tiefeng Xu, Changgui Lin. Tetratellurium Clusters Embeddedin Borate Glass Matrices for Broadband Near-Infrared Photoluminescence[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516005 Copy Citation Text show less
    References

    [1] Abdou H E, Mohamed A A, Fackler J P, et al. Structures and properties of gold(I) complexes of interest in biochemical applications[J]. Coordination Chemistry Reviews, 253, 1661-1669(2009).

    [2] Takano S, Hirai H, Nakashima T et al. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): efficient room-temperature phosphorescence from Ru@Au12[J]. Journal of the American Chemical Society, 143, 10560-10564(2021).

    [3] Ma Y G, Che C M, Chao H Y et al. High luminescence gold(I) and copper(I) complexes with a triplet excited state for use in light-emitting diodes[J]. Advanced Materials, 11, 852-857(1999).

    [4] Li S, Dong X Y, Qi K S et al. Full-color tunable circularly polarized luminescence induced by the crystal defect from the co-assembly of chiral silver(I) clusters and dyes[J]. Journal of the American Chemical Society, 143, 20574-20578(2021).

    [5] Wang S X, Morgan E E, Vishnoi P et al. Tunable luminescence in hybrid Cu(I) and Ag(I) iodides[J]. Inorganic Chemistry, 59, 15487-15494(2020).

    [6] Laguna A, Lasanta T, López-de-Luzuriaga J M et al. Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold-silver clusters[J]. Journal of the American Chemical Society, 132, 456-457(2010).

    [7] Chen W B, Zhong L, Zhong Y J et al. Understanding the near-infrared fluorescence and field-induced single-molecule-magnetic properties of dinuclear and one-dimensional-chain ytterbium complexes based on 2-hydroxy-3-methoxybenzoic acid[J]. Inorganic Chemistry Frontiers, 7, 3136-3145(2020).

    [8] Ma H Z, Wang J Y, Zhang X D. Near-infrared II emissive metal clusters: from atom physics to biomedicine[J]. Coordination Chemistry Reviews, 448, 214184(2021).

    [9] Cao R P, Peng M Y, Wondraczek L et al. Superbroad near-to-mid-infrared luminescence from Bi53+ in Bi5(AlCl4)3[J]. Optics Express, 20, 2562-2571(2012).

    [10] Xu H B, Chen X M, Zhang Q S et al. Fluoride-enhanced lanthanide luminescence and white-light emitting in multifunctional Al3Ln2 (Ln = Nd, Eu, Yb) heteropentanuclear complexes[J]. Chemical Communications, 7318-7320(2009).

    [11] Banerjee S, Huebner L, Romanelli M D et al. Oxoselenido clusters of the lanthanides: rational introduction of oxo ligands and near-IR emission from Nd(III)[J]. Journal of the American Chemical Society, 127, 15900-15906(2005).

    [12] Lebedkin S, Weigend F, Eichhöfer A. Near-infrared luminescence in trinuclear mixed-metal chalcogenolate complexes of the types[M2Ti(EPh)6(PPh3)2](M = Cu, Ag; E = S, Se) and[Na(thf)3]2[Ti(SPh)6[J]. Inorganic Chemistry, 60, 8936-8945(2021).

    [13] Wan X K, Xu W W, Yuan S F et al. A near-infrared-emissive alkynyl-protected Au24 nanocluster[J]. Angewandte Chemie, 54, 9683-9686(2015).

    [14] Sun H T, Sakka Y, Shirahata N et al. Near-infrared photoluminescence from molecular crystals containing tellurium[J]. Journal of Materials Chemistry, 22, 24792-24797(2012).

    [15] Jia J H, Liang J X, Lei Z et al. A luminescent gold(I)-copper(I) cluster with unprecedented carbon-centered trigonal prismatic hexagold[J]. Chemical Communications, 47, 4739-4741(2011).

    [16] Jia J H, Wang Q M. Intensely luminescent gold(I)-silver(I) cluster with hypercoordinated carbon[J]. Journal of the American Chemical Society, 131, 16634-16635(2009).

    [17] Wang Q M, Lee Y A, Crespo O et al. Intensely luminescent gold (I)-silver(I) cluster complexes with tunable structural features[J]. Journal of the American Chemical Society, 126, 9488-9489(2004).

    [18] Wang Q M, Lin Y M, Liu K G. Role of anions associated with the formation and properties of silver clusters[J]. Accounts of Chemical Research, 48, 1570-1579(2015).

    [19] Treacy M M J, Borisenko K B. The local structure of amorphous silicon[J]. Science, 335, 950-953(2012).

    [20] Konijnendijk W L[M]. The structure of borosilicate glasses(1975).

    [21] Möncke D, Kamitsos E I, Palles D et al. Transition and post-transition metal ions in borate glasses: borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties[J]. The Journal of Chemical Physics, 145, 124501(2016).

    [22] Kamitsos E, Karakassides M. Structural studies of binary and pseudo binary sodium borate glasses of high sodium content[J]. Physics and Chemistry of Glasses, 30, 19-26(1989).

    [23] Santos C N, de Sousa Meneses D, Echegut P et al. Structural, dielectric, and optical properties of yttrium calcium borate glasses[J]. Applied Physics Letters, 94, 151901(2009).

    [24] Dias J D M, Melo G H A, Lodi T A et al. Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses[J]. Journal of Rare Earths, 34, 521-528(2016).

    [25] Khonthon S, Punpai P, Morimoto S et al. On the near-infrared luminescence from TeO2 containing borate glasses[J]. Journal of the Ceramic Society of Japan, 116, 829-831(2008).

    [26] Konijnendijk W L, Stevels J M. The structure of borate glasses studied by Raman scattering[J]. Journal of Non-Crystalline Solids, 18, 307-331(1975).

    [27] Chryssikos G D, Kamitsos E I, Patsis A P et al. On the structure of alkali borate glasses approaching the orthoborate composition[J]. Materials Science and Engineering: B, 7, 1-4(1990).

    [28] Meera B N, Sood A K, Chandrabhas N et al. Raman study of lead borate glasses[J]. Journal of Non-Crystalline Solids, 126, 224-230(1990).

    [29] Song J M, Lin Y Z, Zhan Y J et al. Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property[J]. Crystal Growth & Design, 8, 1902-1908(2008).

    [30] Liu J W, Chen F, Zhang M et al. Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability[J]. Langmuir, 26, 11372-11377(2010).

    [31] Azhniuk Y M, Lopushansky V V, Hutych Y I et al. Precipitates of selenium and tellurium in II-VI nanocrystal-doped glass probed by Raman scattering[J]. Physica Status Solidi (b), 248, 674-679(2011).

    [32] Smedskjaer M M, Mauro J C, Youngman R E et al. Topological principles of borosilicate glass chemistry[J]. The Journal of Physical Chemistry B, 115, 12930-12946(2011).

    [33] MacKenzie K J, Smith M E[M]. Multinuclear solid-state nuclear magnetic resonance of inorganic materials(2002).

    [34] Bruns S, Uesbeck T, Weil D et al. Influence of Al2O3 addition on structure and mechanical properties of borosilicate glasses[J]. Frontiers in Materials, 7, 189(2020).

    [35] Khanna A, Saini A, Chen B H et al. Structural study of bismuth borosilicate, aluminoborate and aluminoborosilicate glasses by 11B and 27Al MAS NMR spectroscopy and thermal analysis[J]. Journal of Non-Crystalline Solids, 373/374, 34-41(2013).

    [36] Lei Z, Pei X L, Guan Z J et al. Full protection of intensely luminescent gold(I)-silver(I) cluster by phosphine ligands and inorganic anions[J]. Angewandte Chemie International Edition, 56, 7117-7120(2017).

    [37] Tan L L, Huang L, He C C et al. Tailoring cluster configurations enables tunable broad-band luminescence in glass[J]. Chemistry of Materials, 32, 8653-8661(2020).

    [38] Tan L L, Huang L, Peng M Y. D2h-symmetric tetratellurium clusters in silicate glass as a broadband NIR light source for spectroscopy applications[J]. ACS Applied Materials & Interfaces, 12, 51628-51636(2020).

    [39] Brow R K, Tallant D R, Turner G L. Polyhedral arrangements in lanthanum aluminoborate glasses[J]. Journal of the American Ceramic Society, 80, 1239-1244(2005).

    [40] Zhao Y Q, Peng M Y, Mermet A et al. Precise frequency shift of NIR luminescence from bismuth-doped Ta2O5-GeO2glass via composition modulation[J]. Journal of Materials Chemistry C, 2, 7830-7835(2014).

    [41] Tan L L, Kang S L, Pan Z W et al. Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification[J]. Advanced Optical Materials, 4, 1624-1634(2016).

    [42] Poborchii V V. Polarized Raman and optical absorption spectra of the mordenite single crystals containing sulfur, selenium, or tellurium in the one-dimensional nanochannels[J]. Chemical Physics Letters, 251, 230-234(1996).

    [43] Pan B C. Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters[J]. Physical Review B, 65, 085407(2002).

    [44] Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials[J]. Progress in Materials Science, 57, 1426-1491(2012).

    [45] Guery G, Fargues A, Cardinal T et al. Impact of tellurite-based glass structure on Raman gain[J]. Chemical Physics Letters, 554, 123-127(2012).

    Linling Tan, Shuo Wang, Gangjie Zhou, Tiefeng Xu, Changgui Lin. Tetratellurium Clusters Embeddedin Borate Glass Matrices for Broadband Near-Infrared Photoluminescence[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516005
    Download Citation