• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11411 (2018)
Yang Dong, Liu Lipu, Yang Hong, Gong Qihuang, and Li Yan*
Author Affiliations
  • School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/LOP55.011411 Cite this Article Set citation alerts
    Yang Dong, Liu Lipu, Yang Hong, Gong Qihuang, Li Yan. Laser Micro-Nano Three-Dimensional Printing[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11411 Copy Citation Text show less
    References

    [1] Sun T, Morgan H. Single-cell microfluidic impedance cytometry: a review[J]. Microfluidics and Nanofluidics, 8, 423-443(2010). http://link.springer.com/article/10.1007/s10404-010-0580-9

    [2] Duncombe T A, Tentori A M, Herr A E. Microfluidics: reframing biological enquiry[J]. Nature Reviews Molecular Cell Biology, 16, 554-567(2015).

    [3] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals: molding the flow of light(2008).

    [5] Andre J C, Mehaute A L. -01-17[P]. Witte O D. Device for producing a model of an industrial part: FR2567668.(1986).

    [6] Deckard C R. Method. -09-05[P]. apparatus for producing parts by selective sintering: US4863538.(1989).

    [7] Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding. [C]// Proceedings of the IEEE Micro Electro Mechanical Systems Conference, 42-47(1993).

    [8] Ebert R, Regenfuss P, Kloetzer S et al. Process assembly for μm-scale SLS, reaction sintering, and CVD[C]. SPIE, 5063, 183-188(2003).

    [9] Kaiser W, Garrett C. Two-photon excitation in CaF2∶Eu 2+[J]. Physical Review Letters, 7, 229-231(1961). http://www.mendeley.com/research/twophoton-excitation-caf-eu/

    [10] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters, 22, 132-134(1997). http://www.ncbi.nlm.nih.gov/pubmed/18183126

    [11] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001). http://www.nature.com/nature/journal/v412/n6848/full/412697a0.html

    [12] Tan D, Li Y, Qi F et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Applied Physics Letters, 90, 071106(2007). http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2007ApPhL..90g1106T

    [13] Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 67, 1721-1754(2013). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s00170-012-4605-2

    [14] Zhang X, Jiang X N, Sun C. Micro-stereolithography of polymeric and ceramic microstructures[J]. Sensors and Actuators A: Physical, 77, 149-156(1999). http://www.sciencedirect.com/science/article/pii/S0924424799001892

    [15] Tumbleston J R, Shirvanyants D, Ermoshkin N et al. Continuous liquid interface production of 3D objects[J]. Science, 347, 1349-1352(2015). http://www.mendeley.com/catalog/continuous-liquid-interface-production-3d-objects-1/

    [16] Lin X C, Liu H G. Continuous liquid interface production 3D printing technology and its application in fabrication of architecture models[J]. Acta Optica Sinica, 36, 0816002(2016).

    [17] Lee J W, Lee I H, Cho D W. Development of micro-stereolithography technology using metal powder[J]. Microelectronic Engineering, 83, 1253-1256(2006). http://www.sciencedirect.com/science/article/pii/S0167931706001250

    [18] Regenfus P, Ebert R, Exner H. Laser micro sintering——a versatile instrument for the generation of microparts[J]. Laser Technik Journal, 4, 26-31(2007). http://onlinelibrary.wiley.com/doi/10.1002/latj.200790139/abstract

    [19] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=14595365

    [20] Li L, Gattass R R, Gershgoren E et al. Achieving lambda/20 Resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009). http://www.ncbi.nlm.nih.gov/pubmed/19359543

    [21] Jia B, Kang H, Li J et al. Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method[J]. Optics Letters, 34, 1918-1920(2009). http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-13-1918

    [22] Guo R, Xiao S, Zhai X et al. Micro lens fabrication by means of femtosecond two photon photopolymerization[J]. Optics Express, 14, 810-816(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000005000005000188000001&idtype=cvips&gifs=Yes

    [23] Tian Z N, Yao W G, Xu J J et al. Focal varying microlens array[J]. Optics Letters, 40, 4222-4225(2015).

    [24] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016). http://www.nature.com/abstractpagefinder/10.1038/nphoton.2016.121

    [25] Liu Z, Li Y, Xiao Y et al. Direct laser writing of whispering gallery microcavities by two-photon polymerization[J]. Applied Physics Letters, 97, 211105(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5645576&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number%3A5645571)

    [26] Tomazio N B, de Boni L, Mendonça C R. Low-threshold Rhodamine B doped microlasers fabricated via two-photon polymerization. [C]// Frontiers in Optics, FTh3A, 3(2017).

    [27] Sun H B, Matsuo S, Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Applied Physics Letters, 74, 786-788(1999). http://scitation.aip.org/content/aip/journal/apl/74/6/10.1063/1.123367

    [28] Digaum J L, Pazos J J, Chiles J et al. Tight control of light beams in photonic crystals with spatially-variant lattice orientation[J]. Optics Express, 22, 25788-25804(2014).

    [29] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014). http://scitation.aip.org/content/aip/journal/apr2/1/4/10.1063/1.4904320

    [30] Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid[J]. Applied Physics Letters, 82, 133-135(2003). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4868544

    [31] Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication[J]. Applied Physics Letters, 89, 144101(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4822530

    [32] Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 22, 3204-3207(2010). http://europepmc.org/abstract/MED/20603886

    [33] Tayalia P, Mendonca C R, Baldacchini T et al. 3D cell-migration studies using two-photon engineered polymer scaffolds[J]. Advanced Materials, 20, 4494-4498(2008). http://onlinelibrary.wiley.com/doi/10.1002/adma.200801319/full

    [34] Gittard S D, Nguyen A, Obata K et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2, 3167-3178(2011).

    [35] Buch-Månson N, Spangenberg A. Gomez L P C, et al. Rapid prototyping of polymeric nanopillars by 3D direct laser writing for controlling cell behavior[J]. Scientific Reports, 7, 9247(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5569057/

    [36] Kato J, Takeyasu N. AdachiY, et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4893432

    [37] Jenness N J, Wulff K D, Johannes M S et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator[J]. Optics Express, 16, 15942-15948(2008). http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-20-15942

    [38] Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011). http://europepmc.org/abstract/med/21283205

    [39] Hu Y, Chen Y, Ma J. et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Applied Physics Letters, 103, 141112(2013). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6619350

    [40] Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 18, 17193-17200(2010). http://europepmc.org/abstract/MED/20721108

    [41] Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms[J]. Optics Express, 22, 24217-24223(2014).

    [42] Yang L, Qian D, Xin C et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Optics Letters, 42, 743-746(2017). http://europepmc.org/abstract/MED/28198854

    [43] Zhang C, Hu Y, Li J et al. A rapid two-photon fabrication of tube array using an annular Fresnel lens[J]. Optics Express, 22, 3983-3990(2014).

    [44] Lin H, Gu M. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam[J]. Applied Physics Letters, 102, 084103(2013). http://scitation.aip.org/content/aip/journal/apl/102/8/10.1063/1.4794030

    [45] Zhang S, Li Y, Liu Z. et al. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum[J]. Applied Physics Letters, 105, 061101(2014). http://scitation.aip.org/content/aip/journal/apl/105/6/10.1063/1.4893007

    [46] Liu L P, Zhang S J, Yang H et al. Fabrication of double-helix microstructures by two-photon polymerization[J]. Chinese Journal of Lasers, 44, 0102006(2017).

    Yang Dong, Liu Lipu, Yang Hong, Gong Qihuang, Li Yan. Laser Micro-Nano Three-Dimensional Printing[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11411
    Download Citation