• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 111101 (2019)
Yingzhe Gao1、**, Yi Yuan1、***, and Zhenhe Ma2、*
Author Affiliations
  • 1 Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 0 66004, China
  • 2 School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 0 66004, China
  • show less
    DOI: 10.3788/LOP56.111101 Cite this Article Set citation alerts
    Yingzhe Gao, Yi Yuan, Zhenhe Ma. High-Resolution Cortical Blood Flow Imaging Based on Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111101 Copy Citation Text show less
    References

    [1] Zhang X F, Hu D Y, Ding R J et al. Status and trend of cardio-cerebral-vascular diseases mortality in China[J]. Chinese Journal of Hypertension, 40, 600(2012).

         Zhang X F, Hu D Y, Ding R J et al. Status and trend of cardio-cerebral-vascular diseases mortality in China[J]. Chinese Journal of Hypertension, 40, 600(2012).

    [2] Li G Q, Fan J, Liu J et al. Impact of cerebrovascular disease mortality on life expectancy in China[J]. Biomedical and Environmental Sciences, 27, 169-175(2014). http://www.ncbi.nlm.nih.gov/pubmed/24709097

         Li G Q, Fan J, Liu J et al. Impact of cerebrovascular disease mortality on life expectancy in China[J]. Biomedical and Environmental Sciences, 27, 169-175(2014). http://www.ncbi.nlm.nih.gov/pubmed/24709097

    [3] Mozaffarian D, Benjamin E J, Go A S et al. Heart disease and stroke statistics: 2015 update[J]. Circulation, 131, e29-e322(2015). http://eurheartj.oxfordjournals.org/lookup/ijlink?linkType=FULL&journalCode=circulationaha&resid=131/4/e29&atom=%2Fehj%2F37%2F23%2F1789.atom

         Mozaffarian D, Benjamin E J, Go A S et al. Heart disease and stroke statistics: 2015 update[J]. Circulation, 131, e29-e322(2015). http://eurheartj.oxfordjournals.org/lookup/ijlink?linkType=FULL&journalCode=circulationaha&resid=131/4/e29&atom=%2Fehj%2F37%2F23%2F1789.atom

    [4] Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia[J]. Frontiers in Cellular Neuroscience, 10, 2(2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724711/

         Suzuki Y, Nagai N, Umemura K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia[J]. Frontiers in Cellular Neuroscience, 10, 2(2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724711/

    [5] del Zoppo G J, Hallenbeck J M. Advances in the vascular pathophysiology of ischemic stroke[J]. Thrombosis Research, 98, 73-81(2000). http://www.ncbi.nlm.nih.gov/pubmed/10812160

         del Zoppo G J, Hallenbeck J M. Advances in the vascular pathophysiology of ischemic stroke[J]. Thrombosis Research, 98, 73-81(2000). http://www.ncbi.nlm.nih.gov/pubmed/10812160

    [6] Kornguth S, Anderson M, Markley J L et al. Near-microscopic magnetic resonance imaging of the brains of phenylalanine hydroxylase-deficient mice, normal littermates, and of normal BALB/c mice at 9.4 tesla[J]. NeuroImage, 1, 220-229(1994). http://www.sciencedirect.com/science/article/pii/S105381198471007X

         Kornguth S, Anderson M, Markley J L et al. Near-microscopic magnetic resonance imaging of the brains of phenylalanine hydroxylase-deficient mice, normal littermates, and of normal BALB/c mice at 9.4 tesla[J]. NeuroImage, 1, 220-229(1994). http://www.sciencedirect.com/science/article/pii/S105381198471007X

    [7] Grinvald A, Lieke E, Frostig R D et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals[J]. Nature, 324, 361-364(1986). http://cercor.oxfordjournals.org/external-ref?access_num=10.1038/324361a0&link_type=DOI

         Grinvald A, Lieke E, Frostig R D et al. Functional architecture of cortex revealed by optical imaging of intrinsic signals[J]. Nature, 324, 361-364(1986). http://cercor.oxfordjournals.org/external-ref?access_num=10.1038/324361a0&link_type=DOI

    [8] Dunn A K, Bolay H, Moskowitz M A et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 21, 195-201(2001). http://brain.oxfordjournals.org/lookup/external-ref?access_num=11295873&link_type=MED&atom=%2Fbrain%2F130%2F4%2F995.atom

         Dunn A K, Bolay H, Moskowitz M A et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 21, 195-201(2001). http://brain.oxfordjournals.org/lookup/external-ref?access_num=11295873&link_type=MED&atom=%2Fbrain%2F130%2F4%2F995.atom

    [9] Nielsen A N, Fabricius M, Lauritzen M. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression[J]. Journal of Vascular Research, 37, 513-522(2000).

         Nielsen A N, Fabricius M, Lauritzen M. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression[J]. Journal of Vascular Research, 37, 513-522(2000).

    [10] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 30, 625-627(2005). http://europepmc.org/abstract/MED/15791997

         Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 30, 625-627(2005). http://europepmc.org/abstract/MED/15791997

    [11] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

         Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [12] Fercher A F. In-vivo optical coherence tomography in ophthalmology[J]. Proceedings of SPIE, 10311, 103110L(1993). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2647415

         Fercher A F. In-vivo optical coherence tomography in ophthalmology[J]. Proceedings of SPIE, 10311, 103110L(1993). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2647415

    [13] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

         Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

    [14] Thrane L, Frosz M H, Jørgensen T M et al. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures[J]. Optics Letters, 29, 1641-1643(2004). http://europepmc.org/abstract/MED/15309845

         Thrane L, Frosz M H, Jørgensen T M et al. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures[J]. Optics Letters, 29, 1641-1643(2004). http://europepmc.org/abstract/MED/15309845

    [15] Oldenburg A L, Reynolds J J, Marks D L et al. Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner[J]. Applied Optics, 42, 4606-4611(2003). http://www.ncbi.nlm.nih.gov/pubmed/12916629

         Oldenburg A L, Reynolds J J, Marks D L et al. Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner[J]. Applied Optics, 42, 4606-4611(2003). http://www.ncbi.nlm.nih.gov/pubmed/12916629

    [16] Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002). http://www.ncbi.nlm.nih.gov/pubmed/12175297

         Wojtkowski M, Leitgeb R, Kowalczyk A et al. In vivo human retinal imaging by Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 7, 457-463(2002). http://www.ncbi.nlm.nih.gov/pubmed/12175297

    [17] He Q Y, Li Z L, Wang X Z et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 36, 1011003(2016).

         He Q Y, Li Z L, Wang X Z et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 36, 1011003(2016).

    [18] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

         Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [19] Ding Z H, Zhao C, Bao W et al. Advances in Doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 50, 080005(2013).

         Ding Z H, Zhao C, Bao W et al. Advances in Doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 50, 080005(2013).

    [20] Chen J B, Zeng Y G, Yuan Z L et al. Optical coherence tomography based on dynamic speckle[J]. Acta Optica Sinica, 38, 0111001(2018).

         Chen J B, Zeng Y G, Yuan Z L et al. Optical coherence tomography based on dynamic speckle[J]. Acta Optica Sinica, 38, 0111001(2018).

    [21] Liu J, Ma Y S, Dou S D et al. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography[J]. Journal of Biomedical Optics, 21, 075014(2016). http://www.ncbi.nlm.nih.gov/pubmed/27469083

         Liu J, Ma Y S, Dou S D et al. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography[J]. Journal of Biomedical Optics, 21, 075014(2016). http://www.ncbi.nlm.nih.gov/pubmed/27469083

    Yingzhe Gao, Yi Yuan, Zhenhe Ma. High-Resolution Cortical Blood Flow Imaging Based on Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111101
    Download Citation