• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011001 (2021)
Weitao Liu1、2、*†, Shuai Sun1、2、†, Hongkang Hu1、2, and Huizu Lin1、2
Author Affiliations
  • 1Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/LOP202158.1011001 Cite this Article Set citation alerts
    Weitao Liu, Shuai Sun, Hongkang Hu, Huizu Lin. Progress and Prospect for Ghost Imaging of Moving Objects[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001 Copy Citation Text show less
    References

    [1] Li C Z, Huang M Q, Chen P X et al. Quantum communication and quantum compupation[M](2000).

    [2] Klyshko D N. Photon and nonlinear optics[M](1988).

    [3] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [4] Xu Y K, Liu W T, Zhang E F et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Optics Express, 23, 32993-33000(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-26-32993

    [5] Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection[J]. Optics Express, 24, 25983-25994(2016). http://www.ncbi.nlm.nih.gov/pubmed/27857337

    [6] Deng C J, Pan L, Wang C L et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 5, 431-435(2017).

    [7] Pan L, Deng C J, Bo Z W et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging[J]. Optics Express, 28, 20808-20816(2020). http://www.researchgate.net/publication/342413127_Experimental_investigation_of_chirped_amplitude_modulation_heterodyne_ghost_imaging_Editor's_Pick

    [8] Wu Y B, Yang Z H, Tang Z L. Experimental study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 58, 0611002(2021).

    [9] Morris P A, Aspden R S, Bell J E C et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [10] Aspden R S, Tasca D S, Boyd R W et al. EPR-based ghost imaging using a single-photon-sensitive camera[J]. New Journal of Physics, 15, 073032(2013). http://arxiv.org/abs/1212.5059

    [11] Liu X L, Shi J H, Wu X Y et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018). http://www.ncbi.nlm.nih.gov/pubmed/29567969

    [12] Liu X L, Shi J H, Sun L et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020). http://www.researchgate.net/publication/339308452_Photon-limited_Single-pixel_Imaging/download

    [13] Zhu Y, Shi J H, Wu X Y et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system[J]. Applied Physics B, 126, 21(2020). http://link.springer.com/article/10.1007/s00340-019-7373-y

    [14] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004). http://europepmc.org/abstract/MED/15089466

    [15] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [16] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [17] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017). http://europepmc.org/abstract/MED/28789065

    [18] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [19] Yang S C, Yu H, Lu R H et al. Simulation of Fourier-transform ghost imaging using polychromatic X-ray sources[J]. Acta Optica Sinica, 39, 0511003(2019).

    [20] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014). http://www.opticsinfobase.org/abstract.cfm?uri=optica-1-5-285

    [21] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019). http://www.nature.com/articles/s41566-018-0300-7

    [22] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [23] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [24] Zhao J P, Yiwen E, Williams K et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science & Applications, 8, 55(2019).

    [25] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [26] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://nar.oxfordjournals.org/external-ref?access_num=10.1109/MSP.2007.914730&link_type=DOI

    [27] Huang H, Zhou C, Tian T et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).

    [28] Kang Y, Yao Y P, Kang Z H et al. Performance analysis of compressive ghost imaging based on different signal reconstruction techniques[J]. Journal of the Optical Society of America A, 32, 1063-1067(2015).

    [29] Shi X H, Huang X W, Nan S Q et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method[J]. Laser Physics Letters, 15, 045204(2018).

    [30] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017). http://www.ncbi.nlm.nih.gov/pubmed/29259269

    [31] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018). http://europepmc.org/abstract/MED/29691452

    [32] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [33] Rizvi S, Cao J, Zhang K Y et al. DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 10, 11400(2020). http://www.nature.com/articles/s41598-020-68401-8

    [34] Li W W, Tong Z S, Xiao K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019). http://arxiv.org/abs/1906.05452v1

    [35] Pan Z L, Zhang L H. Optical cryptography-based temporal ghost imaging with chaotic laser[J]. IEEE Photonics Technology Letters, 29, 1289-1292(2017).

    [36] Han S S, Yu H, Shen X et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences, 8, 1379(2018). http://www.researchgate.net/publication/327065951_A_Review_of_Ghost_Imaging_via_Sparsity_Constraints/download

    [37] Ma S, Liu Z T, Wang C L et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019).

    [38] Ma S, Hu C Y, Wang C L et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Communications, 448, 89-92(2019).

    [39] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010). http://www.ncbi.nlm.nih.gov/pubmed/20634840

    [40] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012).

    [41] Zhao S M, Wang L, Liang W Q et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).

    [42] Fuller P W W. An introduction to high speed photography and photonics[J]. The Imaging Science Journal, 57, 293-302(2009).

    [43] Bennink R S, Bentley S J, Boyd R W. “Two-Photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [44] Valencia A, Scarcelli G, D'Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [45] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005). http://www.researchgate.net/publication/7569406_Correlated_two-photon_imaging_with_true_thermal_light

    [46] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [47] Zhai Y H, Chen X H, Zhang D et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005). http://arxiv.org/abs/quant-ph/0506056

    [48] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [49] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [50] Liu X F, Chen X H, Yao X R et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 39, 2314-2317(2014).

    [51] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [52] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [53] Garrison J, Chiao R. Quantum optics[M](2008).

    [54] Padgett M J, Boyd R W. An introduction to ghost imaging: quantum and classical[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 375, 20160233(2017). http://europepmc.org/articles/PMC5487713/

    [55] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000001013801000001&idtype=cvips&gifs=Yes

    [56] Shih Y. The physics of ghost imaging[M]. //Classical, Semi-classical and Quantum Noise, 169-222(2011).

    [57] Shih Y. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).

    [58] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [59] Shapiro J H, Boyd R W. Response to “The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?”[J]. Quantum Information Processing, 11, 1003-1011(2012). http://dl.acm.org/doi/abs/10.1007/s11128-012-0396-5

    [60] Scully M O, Zubairy M S. Quantum optics[M](1997).

    [61] Khamoushi S M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 40, 3452-3455(2015).

    [62] Zhang Z B, Wang X Y, Zheng G A et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041155

    [63] El-Desouki M, Deen M J, Fang Q Y et al. CMOS image sensors for high speed applications[J]. Sensors, 9, 430-444(2009).

    [64] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).

    [65] Suzuki T, Isa F, Fujii L et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering[J]. Optics Express, 23, 30512-30522(2015).

    [66] Gao L, Liang J Y, Li C Y et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 516, 74-77(2014). http://www.ncbi.nlm.nih.gov/pubmed/25471883

    [67] Li H, Xiong J, Zeng G H. Lensless ghost imaging for moving objects[J]. Optical Engineering, 50, 127005(2011). http://spie.org/Publications/Journal/10.1117/1.3662429

    [68] Gong W L, Han S S. The influence of axial correlation depth of light field on lensless ghost imaging[J]. The Journal of the Optical Society of America B, 27, 675-678(2010). http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-4-675

    [69] Zhang C, Gong W L, Han S S. Ghost imaging for moving targets and its application in remote sensing[J]. Chinese Journal of Lasers, 39, 1214003(2012).

    [70] Li Q, Duan Z T, Lin H Z et al. Coprime-frequencied sinusoidal modulation for improving the speed of computational ghost imaging with a spatial light modulator[J]. Chinese Optics Letters, 14, 111103(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJf120049d25df258b

    [71] Welsh S S, Edgar M P, Jonathan P et al. Multi-wavelength compressive computational ghost imaging[J]. Proceedings of SPIE, 8618, 86180I(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2003690

    [72] Chen M, Li E, Han S. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints[J]. Applied Optics, 53, 2924-2928(2014).

    [73] Jiang W J, Li X Y, Peng X L et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020). http://www.researchgate.net/publication/339586025_Imaging_high-speed_moving_targets_with_a_single_pixel_detector

    [74] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401782

    [75] Salvador-Balaguer E, Latorre-Carmona P, Chabert C et al. Low-cost single-pixel 3D imaging by using an LED array[J]. Optics Express, 26, 15623-15631(2018). http://www.researchgate.net/publication/325608591_Low-cost_single-pixel_3D_imaging_by_using_an_LED_array

    [76] Zhao W G, Chen H, Yuan Y et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level[J]. Physical Review Applied, 12, 034049(2019). http://www.researchgate.net/publication/336050743_Ultrahigh-Speed_Color_Imaging_with_Single-Pixel_Detectors_at_Low_Light_Level

    [77] Sayyah K, Efimov O, Patterson P et al. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers[J]. Optics Express, 23, 19405-19416(2015).

    [78] Nitta K, Yano Y, Kitada C et al. Fast computational ghost imaging with laser array modulation[J]. Applied Sciences, 9, 4807(2019). http://www.researchgate.net/publication/337187188_Fast_Computational_Ghost_Imaging_with_Laser_Array_Modulation/download

    [79] Kohno Y, Komatsu K, Tang R et al. Ghost imaging using a large-scale silicon photonic phased array chip[J]. Optics Express, 27, 3817-3823(2019). http://www.researchgate.net/publication/330864100_Ghost_imaging_using_a_large-scale_silicon_photonic_phased_array_chip

    [80] Fukui T, Kohno Y, Tang R et al. Single-pixel imaging through multimode fiber using silicon optical phased array chip[C]. //Optical Fiber Communication Conference (OFC) 2020, San Diego, California. Washington, D.C.: OSA, 1(2020).

    [81] Kameyama Y, Ikeda K, Koyama O et al. Single-pixel Imaging using a Multi-core Fiber[C]. //2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019. Fukuoka, Japan., 1-3(2019).

    [82] Sun S, Liu W T, Lin H Z et al. Multi-scale adaptive computational ghost imaging[J]. Scientific Reports, 6, 37013(2016).

    [83] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging[J]. Optics Letters, 34, 3343-3345(2009).

    [84] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    [85] Aβmann M, Bayer M. Compressive adaptive computational ghost imaging[J]. Scientific Reports, 3, 1545(2013). http://www.ncbi.nlm.nih.gov/pubmed/23529046

    [86] Yu W K, Li M F, Yao X R et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [87] Gu J H, Sun S, Xu Y K et al. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area[J]. Chinese Optics Letters, 19, 041102(2021). http://www.opticsjournal.net/Articles/Abstract?aid=OJ5fd9b257d4ab4e48

    [88] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [89] Yao X R, Yu W K, Liu X F et al. Iterative denoising of ghost imaging[J]. Optics Express, 22, 24268-24275(2014). http://europepmc.org/abstract/med/25322001

    [90] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [91] Sun S, Liu W T, Gu J H et al. Ghost imaging normalized by second-order coherence[J]. Optics Letters, 44, 5993-5996(2019). http://www.ncbi.nlm.nih.gov/pubmed/32628201

    [92] Yang Z, Liu J, Zhang W X et al. Instant single-pixel imaging: on-chip real-time implementation based on the instant ghost imaging algorithm[J]. OSA Continuum, 3, 629-636(2020). http://arxiv.org/abs/2002.00126

    [93] Zhang C, Guo S X, Cao J S et al. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 22, 30063-30073(2014). http://europepmc.org/abstract/med/25606936

    [94] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020).

    [95] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [96] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [97] Jiao S M, Sun M J, Gao Y et al. Motion estimation and quality enhancement for a single image in dynamic single-pixel imaging[J]. Optics Express, 27, 12841-12854(2019). http://www.ncbi.nlm.nih.gov/pubmed/31052819

    [98] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730129

    [99] Shi D F, Yin K X, Huang J et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 440, 155-162(2019).

    [100] Zhang Z B, Li X, Zheng S J et al. Image-free classification of fast-moving objects using “learned” structured illumination and single-pixel detection[J]. Optics Express, 28, 13269-13278(2020). http://www.researchgate.net/publication/340501585_Image-free_classification_of_fast-moving_objects_using_'learned'_structured_illumination_and_single-pixel_detection

    [101] Sun S, Lin H Z, Xu Y K et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019). http://www.ncbi.nlm.nih.gov/pubmed/31684546

    [102] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [103] Zhang C, Gong W L, Han S S. Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction[J]. Applied Physics Letters, 102, 021111(2013).

    [104] Bo Z W, Gong W L, Han S S. Motion de-blurring by second-order intensity-correlated imaging[J]. Chinese Optics Letters, 14, 070301(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJb38483657a6aeb

    [105] Zhang Z B, Ye J Q, Deng Q W et al. Image-free real-time detection and tracking offast moving object using a single-pixel detector[J]. Optics Express, 27, 35394-35401(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878710

    [106] Deng Q W, Zhang Z B, Zhong J G. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection[J]. Optics Letters, 45, 4734-4737(2020). http://www.researchgate.net/publication/343204155_Image-free_real-time_3-D_tracking_of_a_fast_moving_object_using_dual-pixel_detection

    CLP Journals

    [1] LIN Huizu, LIU Weitao, SUN Shuai, DU Longkun, CHANG Chen, LI Yuegang. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863

    Weitao Liu, Shuai Sun, Hongkang Hu, Huizu Lin. Progress and Prospect for Ghost Imaging of Moving Objects[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001
    Download Citation