• Photonics Research
  • Vol. 9, Issue 5, B220 (2021)
Shanshan Zheng1、2, Hao Wang1、2, Shi Dong1、2, Fei Wang1、2, and Guohai Situ1、2、3、4、*
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 4CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
  • show less
    DOI: 10.1364/PRJ.416246 Cite this Article Set citation alerts
    Shanshan Zheng, Hao Wang, Shi Dong, Fei Wang, Guohai Situ. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 2021, 9(5): B220 Copy Citation Text show less
    References

    [1] L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science, 253, 769-771(1991).

    [2] Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano. Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium. Opt. Lett., 20, 1498-1500(1995).

    [3] S. G. Demos, R. R. Alfano. Optical polarization imaging. Appl. Opt., 36, 150-155(1997).

    [4] E. N. Leith, C. Chen, H. Chen, Y. Chen, J. Lopez, P.-C. Sun, D. Dilworth. Imaging through scattering media using spatial incoherence techniques. Opt. Lett., 16, 1820-1822(1991).

    [5] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189-12206(2015).

    [6] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).

    [7] M. Cui, C. Yang. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express, 18, 3444-3455(2010).

    [8] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [9] M. M. Qureshi, J. Brake, H.-J. Jeon, H. Ruan, Y. Liu, A. M. Safi, T. J. Eom, C. Yang, E. Chung. In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomed. Opt. Express, 8, 4855-4864(2017).

    [10] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, C. Yang. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2, 728-735(2015).

    [11] L. Yan, M. Cheng, S. Yuecheng, S. Junhui, L. V. Wang. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica, 4, 280-288(2017).

    [12] S. Feng, C. Kane, P. A. Lee, A. D. Stone. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett., 61, 834-837(1988).

    [13] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [14] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [15] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [16] C. A. Metzler, F. Heide, P. Rangarajan, M. M. Balaji, A. Viswanath, A. Veeraraghavan, R. G. Baraniu. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging. Optica, 7, 63-71(2020).

    [17] T. Dongliang, S. S. Kumar, T. Vinh, D. Cuong. Single-shot large field of view imaging with scattering media by spatial demultiplexing. Appl. Opt., 57, 7533-7538(2018).

    [18] G. Li, W. Yang, H. Wang, G. Situ. Image transmission through scattering media using ptychographic iterative engine. Appl. Sci., 9, 849(2019).

    [19] E. Akkermans, G. Montambaux. Mesoscopic Physics of Electrons and Photons(2007).

    [20] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [21] Y. Rivenson, Y. Zhang, H. Günaydin, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [22] H. Wang, M. Lyu, G. Situ. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 26, 22603-22614(2018).

    [23] A. Sinha, J. Lee, S. Li, G. Barbastathis. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [24] F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020).

    [25] M. Lyu, W. Wang, H. Wang, H. Wang, G. Li, N. Chen, G. Situ. Deep-learning-based ghost imaging. Sci. Rep., 7, 17865(2017).

    [26] F. Wang, H. Wang, H. Wang, G. Li, G. Situ. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging. Opt. Express, 27, 25560-25572(2019).

    [27] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [28] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [29] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photon., 1, 036002(2019).

    [30] Y. Sun, J. Shi, L. Sun, J. Fan, G. Zeng. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 27, 16032-16046(2019).

    [31] J. Gua, Z. Wangb, J. Kuenb, L. Mab, A. Shahroudyb, B. Shuaib, T. Liub, X. Wangb, G. Wang. Recent advances in convolutional neural networks. Pattern Recogn., 77, 354-377(2018).

    [32] R. Michels, F. Foschum, A. Kienle. Optical properties of fat emulsions. Opt. Express, 16, 5907-5925(2008).

    [33] F. Martelli, G. Zaccanti. Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method. Opt. Express, 15, 486-500(2007).

    [34] J. T. Allardice, A. M. Abulafi, D. G. Webb, N. S. Williams. Standardization of intralipid for light scattering in clinical photodynamic therapy. Laser Med. Sci., 7, 461-465(1992).

    [35] P. D. Ninni, F. Martelli, G. Zaccanti. Intralipid: towards a diffusive reference standard for optical tissue phantoms. Phys. Med. Biol., 56, N21-N28(2011).

    [36] B. W. Pogue, M. S. Patterson. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt., 11, 041102(2006).

    [37] M. Raju, S. N. Unni. Concentration-dependent correlated scattering properties of intralipid 20% dilutions. Appl. Opt., 56, 1157-1166(2017).

    [38] M. L. Dong, K. G. Goyal, B. W. Worth, S. S. Makkar, W. Calhoun, L. M. Bali, S. Bali. Accurate in situ measurement of complex refractive index and particle size in intralipid emulsions. J. Biomed. Opt., 18, 087003(2013).

    [39] H. T. Yura, S. G. Hanson, R. S. Hansen, B. Rose. Three-dimensional speckle dynamics in paraxialoptical systems. J. Opt. Soc. Am. A, 16, 1402-1412(1999).

    [40] G. Maret, P. E. Wolf. Multiple light scattering from disordered media: the effect of Brownian motion of scatterers. Z. Phys. B, 65, 409-413(1987).

    [41] M. J. Stephen. Temporal fluctuations in wave propagation in random media. Phys. Rev. B, 37, 1-5(1988).

    [42] D. J. Pine, D. A. Weitz, P. M. Chaikin, E. Herbolzheimer. Diffusing wave spectroscopy. Phys. Rev. Lett., 60, 1134-1137(1988).

    [43] P.-A. Lemieux, D. J. Durian. Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions. J. Opt. Soc. Am. A, 16, 1651-1664(1999).

    [44] F. Scheffold, G. Maret. Universal conductance fluctuations of light. Phys. Rev. Lett., 81, 5800-5803(1998).

    [45] F. Scheffold, W. Hartl, G. Maret, E. Matijevic. Observation of long-range correlations in temporal intensity fluctuations of light. Phys. Rev. B, 56, 10942-10952(1997).

    [46] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).

    [47] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    [48] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning representations by back-propagating errors. Nature, 323, 533-536(1986).

    [49] T. S. Ferguson. An inconsistent maximum likelihood estimate. J. Am. Stat. Assoc., 77, 831-834(1982).

    [50] K. Diederik, J. Ba. Adam: a method for stochastic optimization(2014).

    [51] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [52] A. Coates, A. Y. Ng, H. Lee. An analysis of single-layer networks in unsupervised feature learning. J. Mach. Learn. Res., 15, 215-223(2011).

    [53] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234-241(2015).

    [54] S. Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift(2015).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Shanshan Zheng, Hao Wang, Shi Dong, Fei Wang, Guohai Situ. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 2021, 9(5): B220
    Download Citation