• Frontiers of Optoelectronics
  • Vol. 12, Issue 4, 397 (2019)
Yong LIU1、2, Zhifeng ZHANG2、3, and Cuifang KUANG2、4、*
Author Affiliations
  • 1College of Electronics and Information Engineering, Shanghai University of Electrical Power, Shanghai 200090, China
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University,Hangzhou 310027, China
  • 3School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1007/s12200-019-0866-9 Cite this Article
    Yong LIU, Zhifeng ZHANG, Cuifang KUANG. Airy-like field under high numerical aperture optical system[J]. Frontiers of Optoelectronics, 2019, 12(4): 397 Copy Citation Text show less
    References

    [1] Berry M V, Balazs N L. Nonspreading wave packets. American Journal of Physics, 1979, 47(3): 264–267

    [2] Siviloglou G A, Broky J, Dogariu A, Christodoulides D N. Observation of accelerating Airy beams. Physical Review Letters, 2007, 99(21): 213901

    [3] Jia S, Vaughan J C, Zhuang X. Isotropic three-dimensional superresolution imaging with a self-bending point spread function. Nature Photonics, 2014, 8(4): 302–306

    [4] Vettenburg T, Dalgarno H I C, Nylk J, Coll-Lladó C, Ferrier D E K, ?i?már T, Gunn-Moore F J, Dholakia K. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544

    [5] Chong A, Renninger W H, Christodoulides D N, Wise F W. Airy- Bessel wave packets as versatile linear light bullets. Nature Photonics, 2010, 4(2): 103–106

    [6] Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Spatiotemporal airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 2010, 105(25): 253901

    [7] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678

    [8] Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36 (15): 2883–2885

    [9] iu W, Neshev D N, Shadrivov I V, Miroshnichenko A E, Kivshar Y S. Plasmonic Airy beam manipulation in linear optical potentials. Optics Letters, 2011, 36(7): 1164–1166

    [10] Belafhal A, Ez-Zariy L, Hennani S, Nebdi H. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Optics and Photonics Journal, 2015, 5(7): 234–246

    [11] Khonina S N, Ustinov A V. Fractional Airy beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(11): 1991–1999

    [12] Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047

    [13] Khonina S N, Porfirev A P, Ustinov A V. Sudden autofocusing of superlinear chirp beams. Journal of Optics, 2018, 20(2): 025605

    [14] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981

    [15] Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, Arie A. Nonlinear generation and manipulation of Airy beams. Nature Photonics, 2009, 3(7): 395–398

    [16] Dolev I, Ellenbogen T, Voloch-Bloch N, Arie A. Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals. Applied Physics Letters, 2009, 95(20): 201112

    [17] Dai H T, Sun X W, Luo D, Liu Y J. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Optics Express, 2009, 17(22): 19365–19370

    [18] Luo D, Dai H T, Sun XW, Demir H V. Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode. Optics Communications, 2010, 283(20): 3846–3849

    [19] Gecevicius M, Beresna M, Kazansky P G. Accelerating Airy beams generated by ultrafast laser induced space- variant nanostructures in glass. In: Proceedings of 2012 Conference on Lasers and Electro- Optics (CLEO). San Jose, CA: IEEE, 2012

    [20] Cao R, Yang Y, Wang J G, Bu J, Wang M W, Yuan X C. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Applied Physics Letters, 2011, 99(26): 261106

    [21] Cottrell D M, Davis J A, Hazard T M. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636

    [22] Froehly L, Courvoisier F, Mathis A, Jacquot M, Furfaro L, Giust R, Lacourt P A, Dudley J M. Arbitrary accelerating micron-scale caustic beams in two and three dimensions. Optics Express, 2011, 19(17): 16455–16465

    [23] Singh B K, Remez R, Tsur Y, Arie A. Super-Airy beam: selfaccelerating beam with intensified main lobe. Optics Letters, 2015, 40(20): 4703–4706

    [24] Torre A. Airy beams beyond the paraxial approximation. Optics Communications, 2010, 283(21): 4146–4165

    [25] Carretero L, Acebal P, Blaya S, García C, Fimia A, Madrigal R, Murciano A. Nonparaxial diffraction analysis of Airy and SAiry beams. Optics Express, 2009, 17(25): 22432–22441

    [26] Bar-David J, Voloch-Bloch N, Mazurski N, Levy U. Unveiling the propagation dynamics of self-accelerating vector beams. Scientific Reports, 2016, 6(1): 34272

    [27] Weng X, Song Q, Li X, Gao X, Guo H, Qu J, Zhuang S. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen. Nature Communications, 2018, 9(1): 5035

    [28] Cohen N, Yang S, Andalman A, Broxton M, Grosenick L, Deisseroth K, Horowitz M, Levoy M. Enhancing the performance of the light field microscope using wavefront coding. Optics Express, 2014, 22(20): 24817–24839

    [29] King S V, Doblas A, Patwary N, Saavedra G, Martínez-Corral M, Preza C. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy. Applied Optics, 2015, 54(29): 8587–8595

    [30] Richards B, Wolf E. Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1959, 253(1274): 358–379

    [31] Hao X, Kuang C F, Wang T T, Liu X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. Journal of Optics, 2010, 12(11): 115707

    Yong LIU, Zhifeng ZHANG, Cuifang KUANG. Airy-like field under high numerical aperture optical system[J]. Frontiers of Optoelectronics, 2019, 12(4): 397
    Download Citation