• Journal of Innovative Optical Health Sciences
  • Vol. 18, Issue 2, 2543001 (2025)
Xinxian Zhang1, Jiahao Fan1, Jiawei Song2, Nan Zeng1,*..., Honghui He1, Valery V. Tuchin3 and Hui Ma4,5|Show fewer author(s)
Author Affiliations
  • 1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
  • 2School of Teacher Education, Nanjing Normal University, Nanjing 210097, P. R. China
  • 3Institute of Physics, Saratov State University, Saratov 410012, Russia
  • 4Department of Physics, Tsinghua University, Beijing 100084, P. R. China
  • 5Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, P. R. China
  • show less
    DOI: 10.1142/S1793545825430011 Cite this Article
    Xinxian Zhang, Jiahao Fan, Jiawei Song, Nan Zeng, Honghui He, Valery V. Tuchin, Hui Ma. Polarization optical detection and localization of subcutaneous lesions[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2543001 Copy Citation Text show less
    References

    [1] C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth. Polarisation optics for biomedical and clinical applications: A review. Light: Sci. Appl., 10, 194(2021).

    [2] H. He, R. Liao, N. Zeng, P. Li, Z. Chen, X. Liu, H. Ma. Mueller matrix polarimetry: An emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2019).

    [3] J. Qi, T. Tatla, E. Nissanka-Jayasuriya, A. Y. Yuan, D. Stoyanov, D. S. Elson. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng., 7, 971-985(2023).

    [4] V. V. Tuchin, L. V. Wang, D. A. Zimnyakov. Optical Polarization in Biomedical Applications(2006).

    [5] V. V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 071114(2016).

    [6] V. V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis(2007).

    [7] L. Deng, C. Chen, W. Yu, C. Shao, Z. Shen, Y. Wang, C. He, H. Li, Z. Liu, H. He, H. Ma. Influence of hematoxylin and eosin staining on linear birefringence measurement of fibrous tissue structures in polarization microscopy. J. Biomed. Opt., 28, 102909(2023).

    [8] H. He, C. He, J. Chang, D. Lv, J. Wu, C. Duan, Q. Zhou, N. Zeng, Y. He, H. Ma. Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J. Biophotonics, 10, 664-673(2017).

    [9] Q. Xie, N. Zeng, Y. Huang, V. V. Tuchin, H. Ma. Study on the tissue clearing process using different agents by Mueller matrix microscope. Biomed. Opt. Express, 10, 3269(2019).

    [10] C. Guan, N. Zeng, H. He. Review of polarization-based technology for biomedical applications. J. Innov. Opt. Health Sci., 2430002(2024).

    [11] J. Qi, D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: A review. J. Biophotonics, 10, 950-982(2017).

    [12] S. Alali, A. Vitkin. Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt., 20, 061104(2015).

    [13] Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, H. Ma. Mueller matrix microscope: A quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt., 21, 071112(2016).

    [14] B. Chen, W. Li, H. He, C. He, J. Guo, Y. Shen, S. Liu, T. Sun, J. Wu, H. Ma. Analysis and calibration of linear birefringence orientation parameters derived from Mueller matrix for multi-layered tissues. Opt. Lasers Eng., 146, 106690(2021).

    [15] Y. Dong, J. Wan, L. Si, Y. Meng, Y. Dong, S. Liu, H. He, H. Ma. Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng., 68, 881-892(2021).

    [16] C. He, J. Chang, P. S. Salter, Y. Shen, B. Dai, P. Li, Y. Jin, S. C. Thodika, M. Li, A. Tariq, J. Wang, J. Antonello, Y. Dong, J. Qi, J. Lin, D. S. Elson, M. Zhang, H. He, H. Ma, M. J. Booth. Revealing complex optical phenomena through vectorial metrics. Adv. Photonics, 4, 026001(2022).

    [17] M. Zaffar, A. Pradhan. Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt., 59, 1237(2020).

    [18] E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, H. Ma. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 19, 076013(2014).

    [19] Y. Dong, J. Wan, X. Wang, J.-H. Xue, J. Zou, H. He, P. Li, A. Hou, H. Ma. A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging, 40, 3728-3738(2021).

    [20] M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express, 5, 4223(2014).

    [21] H. Zhai, Y. Sun, H. He, B. Chen, C. He, Y. Wang, H. Ma. Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng., 152, 106955(2022).

    [22] M. Borovkova, A. Bykov, A. Popov, A. Pierangelo, T. Novikova, J. Pahnke, I. Meglinski. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express, 11, 4509(2020).

    [23] J. Wan, Y. Dong, Y. Yao, W. Xiao, R. Huang, J.-H. Xue, R. Peng, H. Pei, X. Tian, R. Liao, H. He, N. Zeng, C. Li, H. Ma. Unsupervised learning of pixel clustering in Mueller matrix images for mapping microstructural features in pathological tissues. Commun. Eng., 2, 88(2023).

    [24] J. Wan, Y. Dong, J.-H. Xue, L. Lin, S. Du, J. Dong, Y. Yao, C. Li, H. Ma. Polarization-based probabilistic discriminative model for quantitative characterization of cancer cells. Biomed. Opt. Express, 13, 3339(2022).

    [25] J. Fan, X. Zhang, N. Zeng, S. Liu, H. He, L. Luo, C. He, H. Ma. Stain transformation using Mueller matrix guided generative adversarial networks. Opt. Lett., 49, 5135(2024).

    [26] S. Wei, L. Si, T. Huang, S. Du, Y. Yao, Y. Dong, H. Ma. Deep-learning-based cross-modality translation from Stokes image to bright-field contrast. J. Biomed. Opt., 28, 102911(2023).

    [27] N. T. Luu, T.-H. Le, Q.-H. Phan, T.-T.-H. Pham. Characterization of Mueller matrix elements for classifying human skin cancer utilizing random forest algorithm. J. Biomed. Opt., 26, 075001(2021).

    [28] S. Ahmed, P. R. Galle, H. Neumann. Molecular endoscopic imaging: The future is bright. Clin. Med. Insights Gastroenterol., 12, 263177451986717(2019).

    [29] H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M. J. Suter. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [30] Y. Zhu, Y. Dong, Y. Yao, L. Si, Y. Liu, H. He, H. Ma. Probing layered structures by multi-color backscattering polarimetry and machine learning. Biomed. Opt. Express, 12, 4324(2021).

    [31] Q. Lai, T. Bu, T. Huang, Y. Sun, Y. Wang, H. Ma. Probing layered tissues by backscattering Mueller matrix imaging and tissue optical clearing. Photonics, 11, 237(2024).

    [32] M. F. G. Wood, X. Guo, I. A. Vitkin. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology. J. Biomed. Opt., 12, 014029(2007).

    [33] J. Y. Lin, D. E. Fisher. Melanocyte biology and skin pigmentation. Nature, 445, 843-850(2007).

    [34] D. H. Goldstein. Mueller matrix dual-rotating retarder polarimeter. Appl. Opt., 31, 6676(1992).

    [35] R. M. A. Azzam. Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett., 2, 148(1978).

    [36] D. H. Goldstein, R. A. Chipman. Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A, 7, 693(1990).

    [37] J. Chue-Sang, M. Gonzalez, A. Pierre, M. Laughrey, I. Saytashev, T. Novikova, J. C. Ramella-Roman. Optical phantoms for biomedical polarimetry: A review. J. Biomed. Opt., 24, 1(2019).

    [38] D. L. Le, D. T. Nguyen, T. H. Le, Q.-H. Phan, T.-T.-H. Pham. Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun., 480, 126460(2021).

    [39] B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, I. Meglinski. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics, 8, 317-323(2015).

    [40] S.-Y. Lu, R. A. Chipman. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A, 13, 1106(1996).

    [41] H. He, N. Zeng, E. Du, Y. Guo, D. Li, R. Liao, H. Ma. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photonics Lasers Med., 2, 129-137(2013).

    [42] X. Zhang, J. Song, J. Fan, N. Zeng, H. He, V. V. Tuchin, H. Ma. Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid. Front. Optoelectron., 17, 29(2024).

    [43] P. Sun, Y. Ma, W. Liu, C. Xu, X. Sun. Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions. J. Opt., 15, 055708(2013).

    Xinxian Zhang, Jiahao Fan, Jiawei Song, Nan Zeng, Honghui He, Valery V. Tuchin, Hui Ma. Polarization optical detection and localization of subcutaneous lesions[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2543001
    Download Citation