• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3000061 (2021)
Wu Songhang1、2, Dong Jihong1, Xu Shuyan1, and Xu Boqian1
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun , Jilin 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP202158.0300006 Cite this Article Set citation alerts
    Wu Songhang, Dong Jihong, Xu Shuyan, Xu Boqian. Overview of Active Support Technology for Main Mirror of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000061 Copy Citation Text show less
    References

    [1] Mast T S, Nelson J E. Fabrication of large optical surfaces using a combination of polishing and mirror bending. Proceedings of SPIE, 1236, 670-681(1990).

    [2] Xu H, Yang L W, Yang H S. Recent progress of active support system for large optical telescope primary mirror. Laser & Optoelectronics Progress, 55, 100002(2018).

    [3] Hu J N, Dong J H, Zhou P W. Review on active support system of large ground-based telescope primary mirror. Laser & Infrared, 47, 5-12(2017).

    [4] Li X P, Shi J F, Wang W et al. Review on splicing structure technology of large aperture space primary mirror. Laser & Optoelectronics Progress, 55, 030002(2018).

    [5] Bai Q S, Wang Q, Zhang Q C et al. High-precision micro-displacement actuator and its application in polar astronomical telescope. Scientia Sinica (Technologica), 46, 697-705(2016).

    [6] Meeks R L, Ashby D et al. Super hard points for the large binocular telescope. Proceedings of SPIE, 733, 1-13(2011).

    [7] Mohammed A M, Li S. Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms, 1538-1550(2016).

    [8] Li Q, Yuan J Z, Liu F. Application of 6-DOF motion platform based on position inverse solution, S.

    [9] Wang F Q, Yuan X Q, Jia H D et al. Simulation analysis of six degrees of freedom motion platform based on Pro/E. China High-Tech, 12-15(2019).

    [10] Gao Z C, Hao L, Wang F G et al. Design and optimization of active adjusting lateral support mechanism for 2 m telescope. Infrared and Laser Engineering, 48, 0814001(2019).

    [11] Mast T S, Nelson J E. Fabrication of the keck ten meter telescope primary mirror. Proceedings of SPIE, 0542, 48-59(1985).

    [12] Ponslet E, Blanco D, Cho M et al. Development of the primary mirror segment support assemblies for the Thirty Meter Telescope. Proceedings of SPIE, 6273, 627319(2006).

    [13] Gong X F, Chen X, Chen Z. Layout optimization of warping harness for segmented-mirror telescope. Optics and Precision Engineering, 27, 364-370(2019).

    [14] An Q C, Zhang J X, Yang F et al. Performance improvement of the Giant Steerable Science Mirror prototype: calibration, added-on damping treatment, and warping harness. Applied Optics, 56, 10009-10015(2017).

    [15] Hvisc A, Burge J. Alignment analysis of four-mirror spherical aberration correctors. Proceedings of SPIE, 7018, 701819(2008).

    [16] Kim S, Yang H S, Lee Y W et al. Merit function regression method for efficient alignment control of two-mirror optical systems. Optics Express, 15, 5059-5068(2007).

    [17] Oteo E, Arasa J. New strategy for misalignment calculation in optical systems using artificial neural networks. Optical Engineering, 52, 074105(2013).

    [18] Contos A R, Scott Acton D, Atcheson P D et al. Aligning and maintaining the optics for the James Webb Space Telescope (JWST) on-orbit: the wavefront sensing and control concept of operations. Proceedings of SPIE, 6265, 62650X(2006).

    [19] Mast T S, Nelson J E. The status of the W. M. Keck Observatory and ten meter telescope. Proceedings of SPIE, 0571, 226-232(1986).

    [20] Han L C. Study on correction of semi-active optics technology for large optical flat mirror based on TMT tertiary mirror. Chinese Academy of Science(2017).

    [21] Jerry E, Terry S. The construction of the Keck Observatory. Proceedings of SPIE, 1236, 47-45(1990).

    [22] Troy M, Chanan G, Roberts J. On-sky measurement accuracy of Keck telescope segment surface errors. Proceedings of SPIE, 9145, 91451Q(2014).

    [23] Han L C, Liu C Z, Fan C B et al. Low-order aberration correction of the TMT tertiary mirror prototype based on a warping harness. Applied Optics, 57, 1662-1670(2018).

    [24] Haruna M, Kim I, Fukushima K et al. Force control technology of segment mirror exchange robot for Thirty Meter Telescope (TMT). Proceedings of SPIE, 9906, 99062Z(2016).

    [25] Lorell K R, Aubrun J N, Clappier R R et al. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope. Proceedings of SPIE, 6267, 62672T(2006).

    [26] Thompson P M, MacMynowski D G, Sirota M J. Control analysis of the TMT primary segment assembly. Proceedings of SPIE, 7012, 70121N(2008).

    [27] Westerhoff T, Hartmann P, Jedamzik R et al. Performance of industrial scale production of ZERODUR mirrors with diameter of 1.5 m proves readiness for the ELT M1 segments. Proceedings of SPIE, 8444, 844437(2012).

    [28] Nijenhuis J, Heijmans J, den Breeje R et al. Designing the primary mirror support for the E-ELT. Proceedings of SPIE, 9906, 990616(2016).

    [29] Jiménez A, Morante E, Viera T et al. Design of a prototype position actuator for the primary mirror segments of the European Extremely Large Telescope. Proceedings of SPIE, 7733, 773354(2010).

    [30] Briguglio R, Pariani G, Xompero M et al. A possible concept for the day-time calibration and co-phasing of the adaptive M4 mirror at the E-ELT telescope. Proceedings of SPIE, 1070, 1070379(2018).

    [31] Hull C, Gunnels S, Johns M et al. Giant Magellan Telescope primary mirror cells. Proceedings of SPIE, 7733, 773327(2010).

    [32] Antonin H, Scott A, Guido A et al. The giant magellan telescope adaptive optics program. Proceedings of SPIE, 8847, 88471l(2012).

    [33] McLeod B, Catropa D, Durusky D et al. The acquisition, guiding, and wavefront sensing system for the Giant Magellan Telescope. Proceedings of SPIE, 1070, 107001T(2018).

    [34] Georage Z, Rebecca B, Brian W et al. Systems engineering for the Giant Magellan Telescope. Proceedings of SPIE, 10705, 107050l(2018).

    [35] Yao Y G. Establishment and testing of LAMOST observation and control system(2008).

    [36] Yao S, Wu X B, Ai Y L et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST) quasar survey: the fourth and fifth data releases. The Astrophysical Journal Supplement Series, 240, 6(2019).

    [37] Cui X Q, Zhao Y H, Chu Y Q et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST). Research in Astronomy and Astrophysics, 12, 1197-1242(2012).

    [38] Venot O, Parmentier V, Blecic J et al. Global chemistry and thermal structure models for the hot Jupiter WASP-43b and predictions for JWST. The Astrophysical Journal Letters, 890, 176(2020).

    [39] Karpenko M, King J T, Dennehy C J et al. Agility analysis of the James Webb Space Telescope. Dynamics, 42, 810-821(2018).

    [40] Mark C. Status of the James Webb Space Telescope(JWST). Proceedings of SPIE, 7010, 70100L(2008).

    [41] Barto A, Acton D S, Finley P et al. Actuator usage and fault tolerance of the James Webb Space Telescope optical element mirror actuators. Proceedings of SPIE, 8442, 84422I(2012).

    [42] Chaney D M, Hadaway J B, Lewis J A. Cryogenic radius of curvature matching for the JWST primary mirror segments. Proceedings of SPIE, 7439, 743916(2009).

    [43] Rober M. Cryogenic nano-actuator for JWST, s.

    [44] Wells C, Coon M. Optomechanical integration and alignment verification of the James Webb Space Telescope (JWST) optical telescope element. Proceedings of SPIE, 7433, 743303(2009).

    [45] Sang C, Michael J, Marcel B. LUVOIR backplane thermal architecture development through the composite CTE sensitivity study. Proceedings of SPIE, 10398, 103980D(2017).

    [46] Lou J Z, Redding D C, Nissen J A et al. LUVOIR primary mirror segment alignment control with joint laser metrology and segment edge sensing. Proceedings of SPIE, 1069, 1069840(2018).

    [47] Lee F, Matthew B, Scott K et al. Ultra-stable segmented telescope sensing and control architecture. https://ntrs.nasa.gov/search.jsp?R=20170007445

    [48] Gong Q, Bolcar M R, Corsetti J A et al. Optical design of the extreme coronagraph for living planetary systems instrument for the LUVOIR mission study. Journal of Astronomical Telescope Instrument and Systems, 5, 025002(2019).

    [49] Bolcar M R, Aloezos S, Bly V T et al. The large UV/Optical/Infrared surveyor (LUVOIR): decadal mission concept design update. Proceedings of SPIE, 10398, 1039809(2017).

    [50] Bolcar M R, Aloezos S, Bly V T et al. The Large UV/Optical/Infrared Surveyor (LUVOIR): decadal mission concept design update. Proceedings of SPIE, 1039, 1039809(2017).

    [51] James C, Matthew B, Julie C et al. Overview of the optomechanical design of the LUVOIR instruments. https://ntrs.nasa.gov/search.jsp??R=20190030689

    Wu Songhang, Dong Jihong, Xu Shuyan, Xu Boqian. Overview of Active Support Technology for Main Mirror of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3000061
    Download Citation