• Acta Optica Sinica
  • Vol. 36, Issue 7, 701002 (2016)
Ai Yeshuang* and Shen Yonglin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0701002 Cite this Article Set citation alerts
    Ai Yeshuang, Shen Yonglin. Measurement Uncertainty-Aware Quantitative Remote Sensing Inversion to Retrieve Suspended Matter Concentration in Inland Water[J]. Acta Optica Sinica, 2016, 36(7): 701002 Copy Citation Text show less
    References

    [1] Shi Kun, Li Yunmei, Wang Qiao, et al.. Study of scattering coefficients model in inland eutrophic lake[J]. Acta Optica Sinica, 2010, 30(9): 2478-2485.

    [2] Huang Changchun, Li Yunmei, Sun Deyong, et al.. Research of scattering spectrum characteristic and formative mechanism of Taihu lake waters[J]. Acta Optica Sinica, 2011, 31(5): 0501003.

    [3] Liu Yanfang, Su Rongguo, Zhou Qianqian, et al.. Rapid modeling offshore eutrophication technique using optical parameters of CDOM[J]. Chinese J Lasers, 2014, 41(12): 1215001.

    [4] Verdin J P. Monitoring water quality conditions in large western reservoir with Landsat imagery[J]. Photogrammetric Engineering and Remote Sensing, 1985, 51(3): 343-353.

    [5] Wang M, Shi W, Tang J. Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements[J]. Remote Sensing of Environment, 2011, 115(3): 841-854.

    [6] Randolph K, Wilson J, Tedesco L, et al.. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin[J]. Remote Sensing of Environment, 2008, 112(11): 4009-4019.

    [7] Olmanson L G, Bauer M E, Brezonik P L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes[J]. Remote Sensing of Environment, 2008, 112(11): 4086-4097.

    [8] Tebbs E J, Remedios J J, Harper D M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM+[J]. Remote Sensing of Environment, 2013, 135: 92-106.

    [9] Olmanson L G, Brezonik P L, Bauer M E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota[J]. Remote Sensing of Environment, 2012, 130: 254-265.

    [10] Sun Deyong, Li Yunmei, Wang Qiao, et al.. Study on remote sensing estimation of suspended matter concentration based on in situ hyperspectral data in Lake Tai waters[J]. Journal of Infrared and Millimeter Wave, 2009, 28(2): 124-128.

    [11] Cui Dongwen. Application of extreme learning machine to total phosphorus and total nitrogen forecast in lakes and reservoirs[J]. Water Resources Protection, 2013, 29(2): 61-66.

    [12] Chen Jun, Fu Jun, Sun Jihong. The application of the numerical method to simulating the impact of the observation errors on the parameters of the water quality retrieval model: A case study of chlorophyll-a concentration[J]. Remote Sensing for Land & Resources, 2011, 23(1): 57-61.

    [13] Giardino C, Bresciani M, Valentini E, et al.. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake[J]. Remote Sensing of Environment, 2015, 157: 48-57.

    [14] Wei Lihang, Hong Zhengfang. Estimation of measurement uncertainty in the field of environmental monitoring[J]. Environmental Science & Technology, 2014, 37(5): 176-181.

    [15] Zhou Bin, Liu Wenqing, Qi Feng, et al.. Error analysis in differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2002, 22(8): 957-961.

    [16] Rousseeuw P J, Leroy A M. Robust regression and outlier detection[M]. San Francisco: John Wiley & Sons, 1987.

    [17] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communication of the ACM, 1981, 24(6): 381-395.

    [18] Myatt D R, Torr P H S, Nasuto S J, et al.. NAPSAC: High noise, high dimensional robust estimation - it’s in the bag[C]. Proceedings of British Machine Vision Conference, Cardiff, 2002, 2: 458-467.

    [19] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892.

    [20] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feed forward neural networks[C]. Proceedings of IEEE International Joint Conference on Neural Networks, Budapest, 2004, 2: 985-990.

    [21] Huang G B, Zhou H, Ding X, et al.. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(2): 513-529.

    [22] Bartlett P L. For valid generalization, the size of the weights is more important than the size of the network[M]. //Advances in neural information processing systems. Cambridge: MIT Press, 1997: 134-140.

    [23] Bartlett P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of network[J]. IEEE Transactions on Information Theory, 1998, 44(2): 525-536.

    [24] Vo Quang Sang, Feng Peng, Tang Bin, et al.. Study on properties of light scattering based on Mie scattering theory for suspended particles in water[J]. Laser & Optoelectronics Progress, 2015, 52(1): 013001.

    [25] Chen Yahui, Qiu Zhongfeng, Sun Deyong, et al.. Remote sensing of suspended particle size in Yellow Sea and Bohai Sea[J]. Acta Optica Sinica, 2015, 35(9): 0901008.

    [26] Liu Zhonghua, Li Yunmei, Tan Jing, et al.. Simulation of backscattering properties of particles in Taihu Lake based on optical closure principle[J]. Acta Optica Sinica, 2012, 32(7): 0701002.

    [27] Shi K, Zhang Y L, Zhu G W, et al.. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data[J]. Remote Sensing of Environment, 2015, 164: 43-56.

    [28] Shi W, Wang M. Satellite observations of the seasonal sediment plume in central East China Sea[J]. Journal of Marine Systems, 2010, 82(4): 280-285.

    [29] Wang M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations[J]. Applied Optics, 2007, 46(9): 1535-1547.

    [30] Zhang Yuchao, Qian Xin, Qian Yu, et al.. Quantitative retrieval of chlorophyll a concentration in Taihu Lake using machine learning methods[J]. Environment Science, 2009, 30(5): 1321-1328.

    [31] Wang Xiangyu, Wang Xili. Gray expansion combined GA-BP neural network model for water quality retrieving of Weihe River by remote sensing[J]. Remote Sensing Technology and Application, 2010, 25(2): 251-256.

    [32] Xue Pengsong, Feng Minquan, Xing Xiaopeng. Water quality prediction model based on Markov chain improving gray neural network[J]. Journal of Wuhan University (Engineering Edition), 2012, 45(3): 319-324.

    CLP Journals

    [1] Wang Wanyan, Yang Kecheng, Luo Man, Guo Wenping, Xia Min, Li Wei. Measurement of Three-Dimensional Volume Scattering Function of Suspended Particles in Water[J]. Acta Optica Sinica, 2018, 38(3): 329001

    Ai Yeshuang, Shen Yonglin. Measurement Uncertainty-Aware Quantitative Remote Sensing Inversion to Retrieve Suspended Matter Concentration in Inland Water[J]. Acta Optica Sinica, 2016, 36(7): 701002
    Download Citation