• Photonics Research
  • Vol. 11, Issue 7, 1314 (2023)
Dongning Liu1, Jingyuan Liu1, Xiaosong Ren1, Xue Feng1, Fang Liu1, Kaiyu Cui1, Yidong Huang1、2, and Wei Zhang1、2、*
Author Affiliations
  • 1Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Electronic Engineering Department, Tsinghua University, Beijing 100084, China
  • 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1364/PRJ.489139 Cite this Article Set citation alerts
    Dongning Liu, Jingyuan Liu, Xiaosong Ren, Xue Feng, Fang Liu, Kaiyu Cui, Yidong Huang, Wei Zhang. Photonic-reconfigurable entanglement distribution network based on silicon quantum photonics[J]. Photonics Research, 2023, 11(7): 1314 Copy Citation Text show less
    References

    [1] S. Wehner, D. Elkouss, R. Hanson. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).

    [2] S.-H. Wei, B. Jing, X.-Y. Zhang, J.-Y. Liao, C.-Z. Yuan, B.-Y. Fan, C. Lyu, D.-L. Zhou, Y. Wang, G.-W. Deng, H.-Z. Song, D. Oblak, G.-C. Guo, Q. Zhou. Towards real-world quantum networks: a review. Laser Photon. Rev., 16, 2100219(2022).

    [3] T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue. Entanglement distribution over 300 km of fiber. Opt. Express, 21, 23241-23249(2013).

    [4] A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, A. Zeilinger. High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys., 5, 389-392(2009).

    [5] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140-1144(2017).

    [6] T. Lutz, P. Kolenderski, T. Jennewein. Toward a downconversion source of positively spectrally correlated and decorrelated telecom photon pairs. Opt. Lett., 38, 697-699(2013).

    [7] T. Kim, M. Fiorentino, F. N. Wong. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A, 73, 012316(2006).

    [8] Z. Zhang, C. Yuan, S. Shen, H. Yu, R. Zhang, H. Wang, H. Li, Y. Wang, G. Deng, Z. Wang, L. You, Z. Wang, H. Song, G. Guo, Q. Zhou. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. npj Quantum Inf., 7, 123(2021).

    [9] J. Zhao, C. Ma, M. Rüsing, S. Mookherjea. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [10] U. A. Javid, J. Ling, J. Staffa, M. Li, Y. He, Q. Lin. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127, 183601(2021).

    [11] G.-T. Xue, Y.-F. Niu, X. Liu, J.-C. Duan, W. Chen, Y. Pan, K. Jia, X. Wang, H.-Y. Liu, Y. Zhang, P. Xu, G. Zhao, X. Cai, Y.-X. Gong, X. Hu, Z. Xie, S. Zhu. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [12] N. A. Lange, J. P. Höpker, R. Ricken, V. Quiring, C. Eigner, C. Silberhorn, T. J. Bartley. Cryogenic integrated spontaneous parametric down-conversion. Optica, 9, 108-111(2022).

    [13] H. Yu, C. Yuan, R. Zhang, Z. Zhang, H. Li, Y. Wang, G. Deng, L. You, H. Song, Z. Wang, G.-C. Guo, Q. Zhou. Spectrally multiplexed indistinguishable single-photon generation at telecom-band. Photon. Res., 10, 1417-1429(2022).

    [14] J. Chen, K. F. Lee, P. Kumar. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference. Phys. Rev. A, 76, 031804(2007).

    [15] S. D. Dyer, B. Baek, S. W. Nam. High-brightness, low-noise, all-fiber photon pair source. Opt. Express, 17, 10290-10297(2009).

    [16] X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, D. Yu. All-fiber source of frequency-entangled photon pairs. Phys. Rev. A, 79, 033817(2009).

    [17] Q. Zhou, S. Dong, W. Zhang, L. You, Y. He, W. Zhang, Y. Huang, J. Peng. Frequency-entanglement preparation based on the coherent manipulation of frequency nondegenerate energy-time entangled state. J. Opt. Soc. Am. B, 31, 1801-1806(2014).

    [18] K.-I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S.-I. Itabashi. Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide. IEEE J. Sel. Top. Quantum Electron., 16, 325-331(2009).

    [19] N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, H. Takesue. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep., 2, 817(2012).

    [20] L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, S. Massar. Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett., 38, 1960-1962(2013).

    [21] J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, M. G. Thompson. On-chip quantum interference between silicon photon-pair sources. Nat. Photonics, 8, 104-108(2014).

    [22] A. Ciurana, V. Martin, J. Martinez-Mateo, B. Schrenk, M. Peev, A. Poppe. Entanglement distribution in optical networks. IEEE J. Sel. Top. Quantum Electron., 21, 37-48(2014).

    [23] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, R. Ursin. An entanglement-based wavelength-multiplexed quantum communication network. Nature, 564, 225-228(2018).

    [24] F. Appas, F. Baboux, M. I. Amanti, A. Lematre, F. Boitier, E. Diamanti, S. Ducci. Flexible entanglement-distribution network with an AlGaAs chip for secure communications. npj Quantum Inf., 7, 118(2021).

    [25] N. B. Lingaraju, H.-H. Lu, S. Seshadri, D. E. Leaird, A. M. Weiner, J. M. Lukens. Adaptive bandwidth management for entanglement distribution in quantum networks. Optica, 8, 329-332(2021).

    [26] X. Liu, X. Yao, R. Xue, H. Wang, H. Li, Z. Wang, L. You, X. Feng, F. Liu, K. Cui, Y. Huang, W. Zhang. An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photon., 5, 076104(2020).

    [27] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec, L. Kling, A. Qiu, M. Razavi, M. Stipcevic, J. G. Rarity, R. Ursin. A trusted node-free eight-user metropolitan quantum communication network. Sci. Adv., 6, eaba0959(2020).

    [28] M. Alshowkan, B. P. Williams, P. G. Evans, N. S. Rao, E. M. Simmerman, H.-H. Lu, N. B. Lingaraju, A. M. Weiner, C. E. Marvinney, Y.-Y. Pai, B. J. Lawrie, N. A. Peters, J. M. Lukens. Reconfigurable quantum local area network over deployed fiber. PRX Quantum, 2, 040304(2021).

    [29] J.-H. Kim, J.-W. Chae, Y.-C. Jeong, Y.-H. Kim. Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network. APL Photon., 7, 016106(2022).

    [30] X. Liu, J. Liu, R. Xue, H. Wang, H. Li, X. Feng, F. Liu, K. Cui, Z. Wang, L. You, Y. Huang, W. Zhang. 40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX, 3, 2(2022).

    [31] E. Fitzke, L. Bialowons, T. Dolejsky, M. Tippmann, O. Nikiforov, T. Walther, F. Wissel, M. Gunkel. Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding. PRX Quantum, 3, 020341(2022).

    [32] Z. Huang, S. K. Joshi, D. Aktas, C. Lupo, A. O. Quintavalle, N. Venkatachalam, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, Ž. Samec, L. Kling, M. Stipčević, R. Ursin, J. G. Rarity. Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network. npj Quantum Inf., 8, 25(2022).

    [33] S. Paesani, M. Borghi, S. Signorini, A. Manos, L. Pavesi, A. Laing. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun., 11, 2505(2020).

    [34] L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, X.-S. Ma. Three-dimensional entanglement on a silicon chip. npj Quantum Inf., 6, 30(2020).

    [35] D.-N. Liu, J.-Y. Zheng, L.-J. Yu, X. Feng, F. Liu, K.-Y. Cui, Y.-D. Huang, W. Zhang. Generation and dynamic manipulation of frequency degenerate polarization entangled bell states by a silicon quantum photonic circuit. Chip, 1, 100001(2022).

    [36] T. Dai, Y. Ao, J. Bao, J. Mao, Y. Chi, Z. Fu, Y. You, X. Chen, C. Zhai, B. Tang, Y. Yang, Z. Li, L. Yuan, F. Gao, X. Lin, M. G. Thompson, J. L. O'Brien, Y. Li, X. Hu, Q. Gong, J. Wang. Topologically protected quantum entanglement emitters. Nat. Photonics, 16, 248-257(2022).

    [37] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).

    [38] L. Cao, W. Luo, Y. Wang, J. Zou, R. D. Yan, H. Cai, Y. Zhang, X. L. Hu, C. Jiang, W. J. Fan, X. Q. Zhou, B. Dong, X. S. Luo, G. Q. Lo, Y. X. Wang, Z. W. Xu, S. H. Sun, X. B. Wang, Y. L. Hao, Y. F. Jin, D. L. Kwong, L. C. Kwek, A. Q. Liu. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).

    [39] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238-242(2020).

    [40] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O'Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, M. G. Thompson. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys., 16, 148-153(2020).

    [41] X. Zheng, P. Zhang, R. Ge, L. Lu, G. He, Q. Chen, F. Qu, L. Zhang, X. Cai, Y. Lu, S. Zhu, P. Wu, X.-S. Ma. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photon., 3, 055002(2021).

    [42] T. K. Paraiso, T. Roger, D. G. Marangon, I. De Marco, M. Sanzaro, R. I. Woodward, J. F. Dynes, Z. Yuan, A. J. Shields. A photonic integrated quantum secure communication system. Nat. Photonics, 15, 850-856(2021).

    [43] M. Avesani, L. Calderaro, M. Schiavon, A. Stanco, C. Agnesi, A. Santamato, M. Zahidy, A. Scriminich, G. Foletto, G. Contestabile, M. Chiesa, D. Rotta, M. Artiglia, A. Montanaro, M. Romagnoli, V. Sorianello, F. Vedovato, G. Vallone, P. Villoresi. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf., 7, 93(2021).

    [44] W. Li, L. Zhang, H. Tan, Y. Lu, S.-K. Liao, J. Huang, H. Li, Z. Wang, H.-K. Mao, B. Yan, Q. Li, Y. Liu, Q. Zhang, C.-Z. Peng, L. You, F. Xu, J.-W. Pan. High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photonics, 17, 416-421(2023).

    [45] X. Qiang, Y. Wang, S. Xue, R. Ge, L. Chen, Y. Liu, A. Huang, X. Fu, P. Xu, T. Yi, F. Xu, M. Deng, J. B. Wang, J. D. A. Meinecke, J. C. F. Matthews, X. Cai, X. Yang, J. Wu. Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor. Sci. Adv., 7, eabb8375(2021).

    [46] C. Vigliar, S. Paesani, Y. Ding, J. C. Adcock, J. Wang, S. Morley-Short, D. Bacco, L. K. Oxenløwe, M. G. Thompson, J. G. Rarity, A. Laing. Error-protected qubits in a silicon photonic chip. Nat. Phys., 17, 1137-1143(2021).

    [47] Y. Chi, J. Huang, Z. Zhang, J. Mao, Z. Zhou, X. Chen, C. Zhai, J. Bao, T. Dai, H. Yuan, M. Zhang, D. Dai, B. Tang, Y. Yang, Z. Li, Y. Ding, L. K. Oxenløwe, M. G. Thompson, J. L. O'Brien, Y. Li, Q. Gong, J. Wang. A programmable qudit-based quantum processor. Nat. Commun., 13, 1166(2022).

    [48] J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenløwe, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O'Brien, Y. Ding, Q. Gong, J. Wang. Very-large-scale integrated quantum graph photonics. Nat. Photonics(2023).

    [49] J. D. Franson. Bell inequality for position and time. Phys. Rev. Lett., 62, 2205-2208(1989).

    [50] P. G. Kwiat, A. M. Steinberg, R. Y. Chiao. High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A, 47, R2472-R2475(1993).

    [51] W. Tittel, J. Brendel, N. Gisin, H. Zbinden. Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A, 59, 4150-4163(1999).

    [52] C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, D. Englund. Entanglement-based quantum communication secured by nonlocal dispersion cancellation. Phys. Rev. A, 90, 062331(2014).

    [53] Y. Ding, C. Peucheret, H. Ou, K. Yvind. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett., 39, 5348-5350(2014).

    [54] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni. Coupling strategies for silicon photonics integrated chips. Photon. Res., 7, 201-239(2019).

    [55] W. Zhang, M. Ebert, J. D. Reynolds, B. Chen, X. Yan, H. Du, M. Banakar, D. T. Tran, C. G. Littlejohns, G. T. Reed, D. J. Thomson. Buried 3D spot-size converters for silicon photonics. Optica, 8, 1102-1108(2021).

    [56] L. Qiao, W. Tang, T. Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep., 7, 42306(2017).

    [57] P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, E. Bernier. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol., 36, 233-238(2017).

    [58] K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, H. Kawashima. Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ silica PLC connector. J. Lightwave Technol., 37, 116-122(2018).

    [59] X. Liu, X. Yao, H. Wang, H. Li, Z. Wang, L. You, Y. Huang, W. Zhang. Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km. Appl. Phys. Lett., 114, 141104(2019).

    [60] J. Franson. Nonlocal cancellation of dispersion. Phys. Rev. A, 45, 3126-3132(1992).

    [61] C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, D. Englund. Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution. Quantum Inf. Process., 14, 1005-1015(2015).

    Dongning Liu, Jingyuan Liu, Xiaosong Ren, Xue Feng, Fang Liu, Kaiyu Cui, Yidong Huang, Wei Zhang. Photonic-reconfigurable entanglement distribution network based on silicon quantum photonics[J]. Photonics Research, 2023, 11(7): 1314
    Download Citation