• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 5, 1850022 (2018)
Tian Guan1、2、*, Yao Li1、2, Muqun Yang3, Yong Jiang4, and Yonghong He1
Author Affiliations
  • 1Shenzhen Key Laboratory for Minimal Invasive Medical Technologies Graduate School at Shenzhen Tsinghua University, Shenzhen 518055, P. R. China
  • 2Department of Biomedical Engineering Tsinghua University, Beijing 100084, P. R. China
  • 3Center of Precision Medicine and Healthcare Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, P. R. China
  • 4Shenzhen Wisonic Medical Technology Co., Ltd. Taoyuan Street, Nanshan District, Shenzhen 518055, P. R. China
  • show less
    DOI: 10.1142/s1793545818500220 Cite this Article
    Tian Guan, Yao Li, Muqun Yang, Yong Jiang, Yonghong He. A photoacoustic imaging system with variable gain at different depths[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850022 Copy Citation Text show less
    References

    [1] J. Kim, S. Park, Y. Jung, S. Chang, J. Park, Y. M. Zhang, J. F. Lovell,C.Kim, "Programmable real-time clinical photoacoustic and ultrasound imaging system," Sci. Rep. 6(11), 35137 (2016).

    [2] K. Sivasubramanian, M. Pramanik, "High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system," Biomed. Opt. Express 7(2), 312–323 (2016).

    [3] A. G. Bell, "Selenium and the photophone," Nature 22, 500–503 (1880).

    [4] L. V. Wang, "Multiscale photoacoustic microscopy and computed tomography," Nat. Photonics 3(9), 503–509 (2009).

    [5] L. H. V. Wang, S. Hu, "Photoacoustic tomography: In vivo imaging from organelles to organs," Science 335(6075), 1458–1462 (2012).

    [6] S. Zackrisson, S. van de Ven, S. S. Gambhir, "Light in and sound out: Emerging translational strategies for photoacoustic imaging," Cancer Res. 74(4), 979–1004 (2014).

    [7] X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, L. H. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21(7), 803–806 (2003).

    [8] J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Y. Guo, L. V. Wang, Q. Zhu, "A real-time photoacoustic tomography system for small animals," Opt. Express 17(13), 10489–10498 (2009).

    [9] M. Pramanik, G. Ku, C. H. Li, L. H. V. Wang, "Design and evaluation of a novel breast cancer detection system combining both thermoacoustic, (TA) and photoacoustic (PA) tomography," Med. Phys. 35(6), 2218–2223 (2008).

    [10] A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, "Optoacoustic imaging of blood for visualization and diagnostics of breast cancer," Proc. SPIE 4618, 81–94 (2002).

    [11] K. H. Song, E. W. Stein, J. A. Margenthaler, L. V. Wang, "Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model," J. Biomed. Opt. 13(5), 054033 (2008).

    [12] K. H. Song, C. Kim, K. Maslov, L. V. Wang, "Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes," Eur. J. Radiol. 70(2), 227–231 (2009).

    [13] C. Passmann, H. Ermert, "A 100-MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(4), 545–552 (1996).

    [14] T. Misaridis, J. A. Jensen, "Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 177–191 (2005).

    [15] S. J. Jung, S. K. Hong, O. K. Kwon, "Low-power lownoise amplifier using attenuation-adaptive noise control for ultrasound imaging systems," IEEE Trans. Biomed. Circuits Syst. 11(1), 108–116 (2017).

    [16] AFE5809 fully integrated, Texas Instruments Incorporated, Dallas, Texas,USA, http://www.ti.com/ product AFE5809/datasheet (2014), pp. 33–35.

    [17] G. Marquez, L. H. V. Wang, S. P. Lin, J. A. Schwartz, S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Optics 37(4), 798–804 (1998).

    [18] J. L. Sandell, T. C. Zhu, "A review of in vivo optical properties of human tissues and its impact on PDT," J. Biophotonics 4(11–12), 773–787 (2011).

    [19] American Natianal Standard for Safe Use of Lasers (Laser Institute of America, 2007), pp. 70–77.

    [20] C. Kim, T. N. Erpelding, L. Jankovic, L. V. Wang, "Performance benchmarks of an array-based handheld photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging", Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 369(1955), 4644–4650 (2011).

    [21] D. P. Wang, Y. H. Wang, W. R. Wang, D. D. Luo, U. Chitgupi, J. M. Geng, Y. Zhou, L. D. Wang, J. F. Lovell, J. Xia, "Deep tissue photoacoustic computed tomography with a fast and compact laser system," Biomed. Opt. Express 8(1), 112–123 (2017).

    [22] G. Ku, L. H. V. Wang, "Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent," Opt. Lett. 30(5), 507–509 (2005).

    Tian Guan, Yao Li, Muqun Yang, Yong Jiang, Yonghong He. A photoacoustic imaging system with variable gain at different depths[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850022
    Download Citation