• Journal of Semiconductors
  • Vol. 45, Issue 4, 042702 (2024)
Lianjun Jiang1, Dongdong Li1,2,3,*, Yuqiang Fang1, Meisheng Zhao1,2,3..., Ming Liu1, Zhilin Xie1,4, Yukang Zhao1, Yanlin Tang1, Wei Jiang1, Houlin Fang1, Rui Ma1, Lei Cheng1, Weifeng Yang1, Songtao Han5 and Shibiao Tang1,2,3,6,**|Show fewer author(s)
Author Affiliations
  • 1QuantumCTek Co., Ltd., Hefei 230088, China
  • 2Shandong Institute of Quantum Science and Technology Co., Ltd., Jinan 250101, China
  • 3QuantumCTek (Beijing) Co., Ltd., Beijing 100193, China
  • 4School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230027, China
  • 5Anhui Armed Police Force, Hefei 230026, China
  • 6School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
  • show less
    DOI: 10.1088/1674-4926/45/4/042702 Cite this Article
    Lianjun Jiang, Dongdong Li, Yuqiang Fang, Meisheng Zhao, Ming Liu, Zhilin Xie, Yukang Zhao, Yanlin Tang, Wei Jiang, Houlin Fang, Rui Ma, Lei Cheng, Weifeng Yang, Songtao Han, Shibiao Tang. Countermeasure against blinding attack for single-photon detectors in quantum key distribution[J]. Journal of Semiconductors, 2024, 45(4): 042702 Copy Citation Text show less
    References

    [1] N Gisin, G Ribordy, W Tittel et al. Quantum cryptography. Rev Mod Phys, 74, 145(2002).

    [2] V Scarani, H Bechmann-Pasquinucci, N J Cerf et al. The security of practical quantum key distribution. Rev Mod Phys, 81, 1301(2009).

    [3] Y L Wu, W S Bao, S R Cao et al. Strong quantum computational advantage using a superconducting quantum processor. Phys Rev Lett, 127, 180501(2021).

    [4] H S Zhong, H Wang, Y H Deng et al. Quantum computational advantage using photons. Science, 370, 1460(2020).

    [5] Q Zhang, F H Xu, Y A Chen et al. Large scale quantum key distribution: Challenges and solutions. Opt Express, 26, 24260(2018).

    [6] S Pirandola, U L Andersen, L Banchi et al. Advances in quantum cryptography. Adv Opt Photonics, 12, 1012(2020).

    [7] Q Liu, Y M Huang, Y Q Du et al. Advances in chip-based quantum key distribution. Entropy, 24, 1334(2022).

    [8] C Z Peng, J Zhang, D Yang et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys Rev Lett, 98, 010505(2007).

    [9] D D Li, M S Zhao, Z Li et al. High dimensional quantum key distribution with temporal and polarization hybrid encoding. Opt Fiber Technol, 68, 102828(2022).

    [10] Y L Tang, C Zhou, D D Li et al. Time-Bin phase-encoding quantum key distribution using Sagnac-based optics and compatible electronics. Opt Express, 31, 26335(2023).

    [11] A Boaron, G Boso, D Rusca et al. Secure quantum key distribution over 421 km of optical fiber. Phys Rev Lett, 121, 190502(2018).

    [12] Y Liu, W J Zhang, C Jiang et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys Rev Lett, 130, 210801(2023).

    [13] W Li, L K Zhang, H Tan et al. High-rate quantum key distribution exceeding 110 Mb s–1. Nat Photonics, 17, 416(2023).

    [14] T Y Chen, J Wang, H Liang et al. Metropolitan all-pass and inter-city quantum communication network. Opt Express, 18, 27217(2010).

    [15] D D Li, S Gao, G C Li et al. Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback. Opt Express, 26, 22793(2018).

    [16] Y L Tang, Z L Xie, C Zhou et al. Field test of quantum key distribution over aerial fiber based on simple and stable modulation. Opt Express, 31, 26301(2023).

    [17] F Zhou, H L Yong, D D Li et al. Study on quantum key distribution between different media. Acta Phys Sin, 63, 140303(2014).

    [18] D D Li, Q Shen, W Chen et al. Proof-of-principle demonstration of quantum key distribution with seawater channel: Towards space-to-underwater quantum communication. Opt Commun, 452, 220(2019).

    [19] T Y Chen, X Jiang, S B Tang et al. Implementation of a 46-node quantum metropolitan area network. NPJ Quantum Inf, 7, 134(2021).

    [20] J F Dynes, A Wonfor, W W S Tam et al. Cambridge quantum network. NPJ Quantum Inf, 5, 101(2019).

    [21] D Ribezzo, M Zahidy, I Vagniluca et al. Deploying an inter-european quantum network. Adv Quantum Technol, 6, 2200061(2023).

    [22] S K Liao, H L Yong, C Liu et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat Photonics, 11, 509(2017).

    [23] S K Liao, W Q Cai, W Y Liu et al. Satellite-to-ground quantum key distribution. Nature, 549, 43(2017).

    [24] Y A Chen, Q Zhang, T Y Chen et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature, 589, 214(2021).

    [25] C Y Lu, Y Cao, C Z Peng et al. Micius quantum experiments in space. Rev Mod Phys, 94, 035001(2022).

    [26] D Gottesman, H K Lo, N Lütkenhaus et al. Security of quantum key distribution with imperfect devices. Quantum Inf Comput, 4, 325(2004).

    [27] F H Xu, X F Ma, Q Zhang et al. Secure quantum key distribution with realistic devices. Rev Mod Phys, 92, 025002(2020).

    [28] D D Li, Y L Tang, Y K Zhao et al. Security of optical beam splitter in quantum key distribution. Photonics, 9, 527(2022).

    [29] Y Wang, G H Du, Y B Xu et al. Practical security of high-dimensional quantum key distribution with intensity modulator extinction. Entropy, 24, 460(2022).

    [30] S H Sun, A Q Huang. A review of security evaluation of practical quantum key distribution system. Entropy, 24, 260(2022).

    [31] V Makarov. Controlling passively quenched single photon detectors by bright light. New J Phys, 11, 065003(2009).

    [32] L Lydersen, C Wiechers, C Wittmann et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics, 4, 686(2010).

    [33] I Gerhardt, Q Liu, A Lamas-Linares et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat Commun, 2, 349(2011).

    [34] C Wiechers, L Lydersen, C Wittmann et al. After-gate attack on a quantum cryptosystem. New J Phys, 13, 013043(2011).

    [35] H Weier, H Krauss, M Rau et al. Quantum eavesdropping without interception: An attack exploiting the dead time of single-photon detectors. New J Phys, 13, 073024(2011).

    [36] Y Zhao, C H F Fung, B Qi et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 78, 042333(2008).

    [37] Y J Qian, D Y He, S Wang et al. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors. Phys Rev Appl, 10, 064062(2018).

    [38] N Jain, C Wittmann, L Lydersen et al. Device calibration impacts security of quantum key distribution. Phys Rev Lett, 107, 110501(2011).

    [39] N J Beaudry, T Moroder, N Lütkenhaus. Squashing models for optical measurements in quantum communication. Phys Rev Lett, 101, 093601(2008).

    [40] P V P Pinheiro, P Chaiwongkhot, S Sajeed et al. Eavesdropping and countermeasures for backflash side channel in quantum cryptography. Opt Express, 26, 21020(2018).

    [41] Z L Yuan, J F Dynes, A J Shields. Avoiding the blinding attack in QKD. Nat Photonics, 4, 800(2010).

    [42] Z L Yuan, J F Dynes, A J Shields. Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Appl Phys Lett, 98, 231104(2011).

    [43] G Gras, N Sultana, A Huang et al. Optical control of single-photon negative feedback avalanche diode detector. J Appl Phys, 127, 094502(2020).

    [44] Z H Wu, A Q Huang, H Chen et al. Hacking single-photon avalanche detectors in quantum key distribution via pulse illumination. Opt Express, 28, 25574(2020).

    [45] B W Gao, Z H Wu, W X Shi et al. Ability of strong-pulse illumination to hack self-differencing avalanche photodiode detectors in a high-speed quantum-key-distribution system. Phys Rev A, 106, 033713(2022).

    [46] J Zhang, P Eraerds, N Walenta et al. 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution, 7681, 239(2010).

    [47] Y Q Fang, W Chen, T H Ao et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm. Rev Sci Instrum, 91, 083102(2020).

    Lianjun Jiang, Dongdong Li, Yuqiang Fang, Meisheng Zhao, Ming Liu, Zhilin Xie, Yukang Zhao, Yanlin Tang, Wei Jiang, Houlin Fang, Rui Ma, Lei Cheng, Weifeng Yang, Songtao Han, Shibiao Tang. Countermeasure against blinding attack for single-photon detectors in quantum key distribution[J]. Journal of Semiconductors, 2024, 45(4): 042702
    Download Citation