• Laser & Optoelectronics Progress
  • Vol. 57, Issue 16, 160001 (2020)
Cheng Guo, Yong Geng, Yulan Zhai, Qin Zuo, Xiu Wen, and Zhengjun Liu*
Author Affiliations
  • School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP57.160001 Cite this Article Set citation alerts
    Cheng Guo, Yong Geng, Yulan Zhai, Qin Zuo, Xiu Wen, Zhengjun Liu. Research Progress on Parameter-Changed Computational Imaging Techniques[J]. Laser & Optoelectronics Progress, 2020, 57(16): 160001 Copy Citation Text show less
    References

    [1] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [2] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy[J]. Optics Express, 20, 3129-3143(2012).

    [3] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [4] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).

    [5] Zhang H, Cao C L, Jin G F et al. Lensless digital holographic imaging based on compressive sensing algorithm[J]. Laser & Optoelectronics Progress, 57, 080001(2020).

    [6] Ji X Y. Coded photography[J]. Acta Optica Sinica, 40, 0111012(2020).

    [7] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [8] Zhang J L, Chen Q, Li J J et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics Letters, 43, 3714-3717(2018).

    [9] Chowdhury S, Chen M, Eckert R et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images[J]. Optica, 6, 1211-1219(2019).

    [10] Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 22, 4960-4972(2014).

    [11] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [12] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [13] Cheng B, Zhang X J, Liu C et al. Birefringence measurement based on ptychgraphic iteratice engine in planar polarimeter[J]. Chinese Journal of Lasers, 46, 1204003(2019).

    [14] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [15] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 30, 833-835(2005).

    [16] Greenbaum A, Luo W, Su T W et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 9, 889-895(2012).

    [17] Geng Y, Tan J B, Guo C et al. Computational coherent imaging by rotating a cylindrical lens[J]. Optics Express, 26, 22110-22122(2018).

    [18] Geng Y, Guo C, Zhou X Y et al. Enhanced multi-rotation computational coherent imaging based on pre-illumination and simulated annealing compensation[J]. Journal of Optics, 21, 115701(2019).

    [19] Zuo Q, Geng Y, Shen C et al. Accurate angle estimation based on moment for multirotation computation imaging[J]. Applied Optics, 59, 492-499(2020).

    [20] Katkovnik V, Shevkunov I, Petrov N V et al. Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments[J]. Optica, 4, 786-794(2017).

    [21] Sidorenko P, Cohen O. Single-shot ptychography[J]. Optica, 3, 9-14(2016).

    [22] Holloway J, Asif M S, Sharma M K et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Transactions on Computational Imaging, 2, 251-265(2016).

    [23] Liu Z J, Guo C, Tan J B et al. Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms[J]. Journal of Optics, 17, 025701(2015).

    [24] Migukin A, Katkovnik V, Astola J. Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm[J]. Journal of the Optical Society of America A, 28, 993-1002(2011).

    [25] Guo C, Zhao Y, Tan J et al. Multi-distance phase retrieval with a weighted shrink-wrap constraint[J]. Optics and Lasers in Engineering, 113, 1-5(2019).

    [26] Guo C, Li Q, Wei C et al. Axial multi-image phase retrieval under tilt illumination[J]. Scientific Reports, 7, 7562(2017).

    [27] Rivenson Y, Zhang Y B, Gunaydin H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).

    [28] Shen C, Guo C, Geng Y et al. Noise-robust pixel-super-resolved multi-image phase retrieval with coherent illumination[J]. Journal of Optics, 20, 115703(2018).

    [29] Guo C, Zhao Y X, Tan J B et al. Adaptive lens-free computational coherent imaging using autofocusing quantification with speckle illumination[J]. Optics Express, 26, 14407-14420(2018).

    [30] Zhang W H, Cao L C, Brady D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).

    [31] Guo C, Liu X M, Kan X C et al. Lensfree on-chip microscopy based on dual-plane phase retrieval[J]. Optics Express, 27, 35216-35229(2019).

    [32] Guo C, Shen C, Li Q et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Scientific Reports, 8, 6436(2018).

    [33] Greenbaum A, Luo W, Khademhosseinieh B et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 3, 1717(2013).

    [34] Navruz I, Coskun A F, Wong J et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array[J]. Lab on a Chip, 13, 4015-4023(2013).

    [35] Vandewalle P, Süsstrunk S, Vetterli M. A frequency domain approach to registration of aliased images with application to super-resolution[J]. EURASIP Journal on Advances in Signal Processing, 2006, 071459(2006).

    [36] Hardie R. A fast image super-resolution algorithm using an adaptive Wiener filter[J]. IEEE Transactions on Image Processing, 16, 2953-2964(2007).

    [37] Guo C, Zhang F L, Zhang X Q et al. Lensfree super-resolved imaging based on adaptive Wiener filter and guided phase retrieval algorithm[J]. Journal of Optics, 22, 055703(2020).

    [38] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [39] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 4, 736-745(2017).

    [40] Zhang F C, Peterson I, Vila-Comamala J et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 21, 13592-13606(2013).

    [41] Maiden A M, Humphry M J, Sarahan M C et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 120, 64-72(2012).

    [42] He X L, Veetil S P, Pan X C et al. High-speed ptychographic imaging based on multiple-beam illumination[J]. Optics Express, 26, 25869-25879(2018).

    [43] Bian Z C, Dong S Y, Zheng G A. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 21, 32400-32410(2013).

    [44] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724-20744(2016).

    [45] Zhou A, Wang W, Chen N et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Optics Express, 26, 23661-23674(2018).

    [46] Guo K K, Zhang Z B, Jiang S W et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination[J]. Biomedical Optics Express, 9, 260-275(2018).

    [47] Wu C, Sudheendran N, Singh M et al. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging[J]. Journal of Biomedical Optics, 21, 026002(2016).

    [48] Lin Y C, Chen H C, Tu H Y et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 42, 1321-1324(2017).

    [49] Wu J G, Conry M, Gu C H et al. Paired-angle-rotation scanning optical coherence tomography forward-imaging probe[J]. Optics Letters, 31, 1265-1267(2006).

    [50] Shen C, Bao X J, Tan J B et al. Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint[J]. Optics Express, 25, 16235-16249(2017).

    [51] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [52] Shen Y, Blondel W. Adjustable frequency filtering and weighted feedback for iterative phase retrieval under noisy conditions[J]. Optics and Lasers in Engineering, 124, 105808(2020).

    Cheng Guo, Yong Geng, Yulan Zhai, Qin Zuo, Xiu Wen, Zhengjun Liu. Research Progress on Parameter-Changed Computational Imaging Techniques[J]. Laser & Optoelectronics Progress, 2020, 57(16): 160001
    Download Citation