• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0714010 (2022)
Zhixia Zheng1、**, Wenfang Li1、*, Dan Zhang2, Yiqing Chao1, Xuejiao Chen1, and Lihan Cai1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Putian University, Putian , Fujian 351100, China
  • 2School of Aerospace Engineering, Xiamen University, Xiamen , Fujian 361005, China
  • show less
    DOI: 10.3788/LOP202259.0714010 Cite this Article Set citation alerts
    Zhixia Zheng, Wenfang Li, Dan Zhang, Yiqing Chao, Xuejiao Chen, Lihan Cai. Rapid Transformation of Wettability on Surface of Laser Etched Red Copper[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714010 Copy Citation Text show less
    References

    [1] Good R J. Contact angle, wetting, and adhesion: a critical review[J]. Journal of Adhesion Science and Technology, 6, 1269-1302(1992).

    [2] Wang S T, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 19, 3423-3424(2007).

    [3] Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 56, 1-108(2011).

    [4] Shang Q Q, Zhou Y H. Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging[J]. Ceramics International, 42, 8706-8712(2016).

    [5] Lv J, Song Y L, Jiang L et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 8, 3152-3169(2014).

    [6] Wang R, Zhu J, Meng K X et al. Superhydrophobic “pump” : continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 25, 4114-4119(2015).

    [7] Zang D M, Zhu R M, Zhang W et al. Corrosion‐resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 27, 1605446(2017).

    [8] Zhou R, Lin S D, Shen F et al. A universal copper mesh with on-demand wettability fabricated by pulsed laser ablation for oil/water separation[J]. Surface and Coatings Technology, 348, 73-80(2018).

    [9] Khew S Y, Tan C F, Yan H P et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation[J]. Applied Surface Science, 465, 995-1002(2019).

    [10] Zhang H F, Yin L, Liu X W et al. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum[J]. Applied Surface Science, 380, 178-184(2016).

    [11] Watson G S, Green D W, Schwarzkopf L et al. A gecko skin micro/nano structure-a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface[J]. Acta Biomaterialia, 21, 109-122(2015).

    [12] Rao V A, Latthe S S, Mahadik S A et al. Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J]. Applied Surface Science, 257, 5772-5776(2011).

    [13] Kamal S A A, Ritikos R, Rahman S A. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique[J]. Applied Surface Science, 328, 146-153(2015).

    [14] Liu Y, Yin X M, Zhang J J et al. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate[J]. Applied Surface Science, 280, 845-849(2013).

    [15] Ruan M, Li W, Wang B et al. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates[J]. Langmuir, 29, 8482-8491(2013).

    [16] Jo H B, Choi J, Byeon K J et al. Superhydrophobic and superoleophobic surfaces using ZnO nano-in-micro hierarchical structures[J]. Microelectronic Engineering, 116, 51-57(2014).

    [17] Chen Z, Hao L M, Chen A Q et al. A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J]. Electrochimica Acta, 59, 168-171(2012).

    [18] Zhao N, Shi F, Wang Z Q et al. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces[J]. Langmuir, 21, 4713-4716(2005).

    [19] Song X, Zhai J, Wang Y et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry. B, 109, 4048-4052(2005).

    [20] Liu S Y, Zhou W, Li Y Y et al. Fabrication and bacterial adhesion of metal dry electrode with surface microstructure arrays[J]. Opto-Electronic Engineering, 44, 1187-1193(2017).

    [21] Li X G, Huang T T, Chong A W et al. Laser cleaning of steel structure surface for paint removal and repaint adhesion[J]. Opto-Electronic Engineering, 44, 340-344(2017).

    [22] Bizi-Bandoki P, Valette S, Audouard E et al. Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations[J]. Applied Surface Science, 273, 399-407(2013).

    [23] Saltuganov P N, Ionin A A, Kudryashov S I et al. Fabrication of superhydrophobic coating on stainless steel surface by femtosecond laser texturing and chemisorption of an hydrophobic agent[J]. Journal of Russian Laser Research, 36, 81-85(2015).

    [24] Pendurthi A, Movafaghi S, Wang W et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials & Interfaces, 9, 25656-25661(2017).

    [25] Wang S T, Liu K S, Yao X et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 115, 8230-8293(2015).

    [26] Bai X, Chen F. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 41, 0114003(2021).

    [27] Bian Y C, Wang Y L, Xiao Y et al. Controllable micro/nano structure surface fabricated by femtosecond laser and its applications[J]. Laser & Optoelectronics Progress, 57, 111406(2020).

    [28] Xu C H, Woo C H, Shi S Q. The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates[J]. Superlattices and Microstructures, 36, 31-38(2004).

    [29] Ye Y, Chen T Y, Cai S J et al. Effects of different humidity on the growth and field emission properties of CuO nanowires[J]. Journal of Inorganic Materials, 28, 1359-1363(2013).

    [30] Shi Y L, Yang W, Feng X J et al. Bio-inspired fabrication of copper oxide nanowire films with switchable wettability via a facile thermal oxidation method[J]. RSC Advances, 5, 26107-26113(2015).

    [31] He A, Liu W W, Xue W et al. Nanosecond laser ablated copper superhydrophobic surface with tunable ultrahigh adhesion and its renewability with low temperature annealing[J]. Applied Surface Science, 434, 120-125(2018).

    [32] Ta D V, Dunn A, Wasley T J et al. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications[J]. Applied Surface Science, 357, 248-254(2015).

    [33] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [34] Chun D M, Ngo C V, Lee K M. Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J]. CIRP Annals, 65, 519-522(2016).

    Zhixia Zheng, Wenfang Li, Dan Zhang, Yiqing Chao, Xuejiao Chen, Lihan Cai. Rapid Transformation of Wettability on Surface of Laser Etched Red Copper[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714010
    Download Citation