• Advanced Photonics Nexus
  • Vol. 2, Issue 3, 036002 (2023)
Yize Liang1、2、3、†, Chengkun Cai1、2、3, Kangrui Wang1、2、3, Xiaokang Lian1、2、3, Jue Wang1、2、3, Jinfeng Liu1、2、3, Lei Shen4, and Jian Wang1、2、3、*
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • 3Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen, China
  • 4Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC), State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.2.3.036002 Cite this Article Set citation alerts
    Yize Liang, Chengkun Cai, Kangrui Wang, Xiaokang Lian, Jue Wang, Jinfeng Liu, Lei Shen, Jian Wang. Low-insertion-loss femtosecond laser-inscribed three-dimensional high-density mux/demux devices[J]. Advanced Photonics Nexus, 2023, 2(3): 036002 Copy Citation Text show less
    References

    [1] R. Essiambre et al. Capacity limits of optical fiber networks. J. Lightwave Technol., 28, 662-701(2010).

    [2] G. Li et al. Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics, 6, 413-487(2014).

    [3] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [4] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [5] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [6] J. Liu et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light Sci. Appl., 7, 17148(2018).

    [7] J. Wang, Y. Liang. Generation and detection of structured light: a review. Front. Phys., 9, 263(2021).

    [8] J. Sakaguchi et al. 19-core fiber transmission of 19× 100× 172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s, PDP5C.1.

    [9] K. Igarashi et al. 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA. Opt. Express, 21, 18053-18060(2013).

    [10] B. J. Puttnam et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb(2015).

    [11] D. Soma et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol., 36, 1362-1368(2018).

    [12] G. Rademacher et al. 10.66 peta-bit/s transmission over a 38-core-three-mode fiber, Th3H.1.

    [13] D. Soma et al. 50.47-Tbit/s Standard cladding ultra-low-loss coupled 4-Core fiber transmission over 9,150 km, W7D.3.

    [14] Y. Liang et al. Experimental demonstration of visualized multi-core fiber coupling alignment system for inter-core crosstalk measurement. Opt. Lett., 47, 3071-3074(2022).

    [15] A. V. Turukhin et al. High capacity ultralong-haul power efficient transmission using 12-core fiber. J. Lightwave Technol., 35, 1028-1032(2017).

    [16] W. Klaus et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technol. Lett., 24, 1902-1905(2012).

    [17] K. Igarashi et al. Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers. Opt. Express, 24, 10213-10231(2016).

    [18] L. Gan et al. Ultra-low crosstalk fused taper type fan-in/fan-out devices for multicore fibers, Th3D.3.

    [19] B. Zhu et al. Seven-core multicore fiber transmissions for passive optical network. Opt. Express, 18, 11117-11122(2010).

    [20] B. Li et al. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt. Express, 23, 10997-11006(2015).

    [21] K. Shikama et al. Low-loss and low-mode-dependent-loss fan-in/fan-out device for 6-mode 19-core fiber. J. Lightwave Technol., 36, 302-308(2017).

    [22] Y. Ding et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt. Express, 23, 3292-3298(2015).

    [23] J. L. P. Ruiz et al. Compact dual-polarization silicon integrated couplers for multicore fibers. Opt. Lett., 46, 3649-3652(2021).

    [24] S. Dwivedi et al. Multicore fiber link with SiN integrated fan-out and InP photodiode array. IEEE Photonics Technol. Lett., 30, 1921-1924(2018).

    [25] T. Watanabe, M. Hikita, Y. Kokubun. Laminated polymer waveguide fan-out device for uncoupled multi-core fibers. Opt. Express, 20, 26317-26325(2012).

    [26] D. Suganuma, T. Ishigure. Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the Mosquito method. Opt. Express, 23, 1585-1593(2015).

    [27] R. R. Thomson et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express, 15, 11691-11697(2007).

    [28] R. R. Thomson et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Opt. Lett., 37, 2331-2333(2012).

    [29] S. Gross, M. J. Withford. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics, 4, 332-352(2015).

    [30] A. Ross-Adams et al. Enabling future fiber networks using integrated ultrafast laser-written multicore fiber fan-outs(2020).

    [31] G. Djogo et al. Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extreme Manuf., 1, 45002(2019).

    [32] J. Cariñe et al. Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica, 7, 542-550(2020).

    [33] B. Da Lio et al. Stable transmission of high-dimensional quantum states over a 2-km multicore fiber. IEEE J. Sel. Top. Quantum Electron., 26, 1-8(2019).

    [34] J. P. Moore, M. D. Rogge. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt. Express, 20, 2967-2973(2012).

    [35] P. S. Westbrook et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J. Lightwave Technol., 35, 1248-1252(2017).

    [36] J. Shin, B. T. Bosworth, M. A. Foster. Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering. Opt. Lett., 42, 109-112(2017).

    [37] V. Tsvirkun et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica, 6, 1185-1189(2019).

    [38] M. Ams et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt. Express, 13, 5676-5681(2005).

    [39] S. Gómez et al. Multidimensional entanglement generation with multicore optical fibers. Phys. Rev. Appl, 15, 34024(2021).

    [40] R. R. Thomson et al. Ultrafast laser inscription of an integrated photonic lantern. Opt. Express, 19, 5698-5705(2011).

    [41] H. Chen et al. Design constraints of photonic-lantern spatial multiplexer based on laser-inscribed 3-D waveguide technology. J. Lightwave Technol., 33, 1147-1154(2015).

    [42] R. G. Van Uden et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photonics, 8, 865-870(2014).

    [43] P. Mitchell et al. 57 channel (19× 3) spatial multiplexer fabricated using direct laser inscription, M3K.5.

    [44] S. Rommel et al. Characterization of a fiber-coupled 36-core 3-mode photonic lantern spatial multiplexer, NeW3B. 2.

    [45] N. Riesen et al. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci. Rep., 7, 1-9(2017).

    Yize Liang, Chengkun Cai, Kangrui Wang, Xiaokang Lian, Jue Wang, Jinfeng Liu, Lei Shen, Jian Wang. Low-insertion-loss femtosecond laser-inscribed three-dimensional high-density mux/demux devices[J]. Advanced Photonics Nexus, 2023, 2(3): 036002
    Download Citation