• Infrared and Laser Engineering
  • Vol. 49, Issue 9, 20201041 (2020)
Zhongyi Guo1、*, Qianlong Kang1, Zhiyong Peng2, Yuemeng Cui2, Huasong Liu2, Jun Gao1, and Kai Guo1
Author Affiliations
  • 1School of Computer and Information, Hefei University of Technology, Hefei 230009, China
  • 2Tianjin Jinhang Institute of Technical Physics, Tianjin 300192, China
  • show less
    DOI: 10.3788/IRLA20201041 Cite this Article
    Zhongyi Guo, Qianlong Kang, Zhiyong Peng, Yuemeng Cui, Huasong Liu, Jun Gao, Kai Guo. Progress of polarization-information detection technology based on manipulations of metasurface[J]. Infrared and Laser Engineering, 2020, 49(9): 20201041 Copy Citation Text show less
    References

    [1] Chi Wang, Jun Gao, Tingting Yao. Acquiring reflective polarization from arbitrary multi-layer surface based on Monte Carlo simulation. Optics Express, 24, 9397-9411(2016).

    [2] 郭忠义, Zhongyi Guo, Xinyang Wang, 汪信洋, Dekui Li, 李德奎. Advances on theory and application of polarization information propagation (Invited). Infrared and Laser Engineering, 49, 20201013(2020).

    [3] Fei Shen, Bianmei Zhang, Kai Guo. The depolarization performances of the polarized light in different scattering media systems. IEEE Photonics Journal, 10, 3900212(2018).

    [4] Tianwei Hu, Fei Shen, Kaipeng Wang. Broad-band transmission characteristics of polarizations in foggy environments. Atomosphere, 10, 342(2019).

    [5] Qiang Xu, Zhongyi Guo, Qiangqiang Tao. A novel method of retrieving the polarization qubits after being transmitted in turbid media. Journal of Optics, 17, 035606(2015).

    [6] Qiang Xu, Zhongyi Guo, Qiangqiang Tao. Transmitting characteristics of the polarization information under seawater. Applied Optics, 54, 6584-6588(2015).

    [7] Qiang Xu, Zhongyi Guo, Qiangqiang Tao. Multi-spectral characteristics of polarization retrieve in various atmospheric conditions. Optics Communications, 339, 167-170(2015).

    [8] 程峰, Feng Cheng. Study on the extraction of aerosol information and its spatial-temporal changes based on PARSOL and CALIPSOL remote sensing data in the Yangtze River Delta. Acta Geodactica et Cartographica Sinica, 48, 803(20196).

    [9] D A Talmage, P J Curran. Remote sensing using partially polarized light. International Journal of Remote Sensing, 7, 47-64(1986).

    [10] M Herman, J L Deuzé, C Devaux. Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements. Journal of Geophysical Research: Atmospheres, 102, 17039-17049(1997).

    [11] P C Y Chang, J C Flitton, K I Hopcraft. Improving visibility depth in passive underwater imaging by use of polarization. Applied Optics, 42, 2794-2803(2003).

    [12] 赵永强, Yongqiang Zhao, Huimin Dai, 戴慧敏, Linghao Shen, 申凌皓. Review of underwater polarization clear imaging methods. Infrared and Laser Engineering, 49, 20190574(2020).

    [13] M Dubreuil, P Delrot, I Leonard. Exploring underwater target detection by imaging polarimetry and correlation techniques. Applied Optics, 52, 997-1005(2013).

    [14] Boer J F De, T E Milner, Gemert M J C Van. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters, 22, 934-936(1997).

    [15] Sakhnovskiy M Y, Syvokovskaya A V, Martseniak V, et al. System of biological crystals fibrillar wks polarizationcrelation mapping[C]Applications of Digital Image Processing XLI. International Society f Optics Photonics, 2018, 10752: 107522G.

    [16] S Gaiarin, A M Perego, Silva E P da. Dual-polarization nonlinear Fourier transform-based optical communication system. Optica, 5, 263-270(2018).

    [17] Qiangqiang Tao, Zhongyi Guo, Qiang Xu. Polarization retrieve for scattering light in the 10 km multilayer atmosphere. Journal of Optics, 17, 085701(2015).

    [18] 许雄, Xiong Xu, 陶强强, Qiangqiang Tao, 沈飞, Fei Shen. Retrieving the polarization information for light communication. Infrared and Laser Engineering, 45, 0922002(2016).

    [19] N E Chamberlain, E K Walton, F D Garber. Radar target identification of aircraft using polarization-diverse features. IEEE Transactions on Aerospace and Electronic Systems, 27, 58-67(1991).

    [20] Qiangqiang Tao, Yongxuan Sun, Fei Shen. Active imaging with the aids of polarization retrieve in turbid media system. Optics Communications, 359, 405-410(2016).

    [21] Feng Wang, 王峰, Rong Jia, 贾镕, Xiao Liu, 刘晓. Study on UV polarization reflection characteristics of sweat latent fingerprints (Invited). Infrared and Laser Engineering, 49, 20201011(2020).

    [22] 熊志航, Zhihang Xiong, 廖然, Ran Liao, 曾亚光, Yaguang Zeng. Rapid identification of metal debris in complicated scenes by using polarization imaging(Invited). Infrared and Laser Engineering, 49, 20201012(2020).

    [23] 陈伟力, Weili Chen, 徐文斌, Wenbin Xu, Shuhua Wang, 王淑华. Research on coating materials detection and recognition based on infrared spectral polarization degree contrast. Infrared and Laser Engineering, 49, 20190445(2020).

    [24] Fei Shen, Kaipeng Wang, Qiangqiang Tao. Polarization imaging performances based on different retrieving Mueller matrixes. Optik, 153, 50-57(2018).

    [25] C K Harnett, H G Craighead. Liquid-crystal micropolarizer array for polarization difference imaging. Applied Optics, 41, 1291-1296(2002).

    [26] , 32, 92-94(2013).

    [27] Farlow C A, Chenault D B, Spradley K D, et al. Imaging polarimeter development applications[C]Proc of SPIE, 2002, 4481: 118125.

    [28] R Perkins, V Gruev. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters. Optics Express, 18, 25815-25824(2010).

    [29] J B Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966(2000).

    [30] Nanfang Yu, P Genevet, M A Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [31] A Pors, M G Nielsen, G D Valle. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 36, 1626-1628(2011).

    [32] Nanfang Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 13, 139-150(2014).

    [33] N Meinzer, W L Barnes, I R Hooper. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 8, 889(2014).

    [34] A F Koenderink, A Alù, A Polman. Nanophotonics: Shrinking light-based technology. Science, 348, 516-521(2015).

    [35] Xiangang Luo, Mingbo Pu, Xiaoliang Ma. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 204127(2015).

    [36] S B Glybovski, S A Tretyakov, P A Belov. Metasurfaces: From microwaves to visible. Physics Reports, 634, 1-72(2016).

    [37] H H Hsiao, Chenghung Chu, D P Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [38] Fei Ding, A Pors, S I Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Reports on Progress in Physics, 81, 026401(2017).

    [39] S V Hum, J Perruisseau-Carrier. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review. IEEE Transactions on Antennas and Propagation, 62, 183-198(2014).

    [40] N I Zheludev, Y S Kivshar. From metamaterials to metadevices. Nature Materials, 11, 917-924(2012).

    [41] P Genevet, F Capasso. Holographic optical metasurfaces: a review of current progress. Reports on Progress in Physics, 78, 024401(2015).

    [42] Zhongyi Guo, Xianzhong Chen, Thomas Zentgraf. Editorial for the theories and applications of metasurfaces. Journal of Physics D, 51, 150201(2018).

    [43] Xingjie Ni, N K Emani, A V Kildishev. Broadband light bending with plasmonic nanoantennas. Science, 335, 427-427(2012).

    [44] Shulin Sun, Kuangyu Yang, C M Wang. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 12, 6223-6229(2012).

    [45] Jian Zhou, Jingjing Wang, Kai Guo. High-efficiency terahertz polarization devices based on the double-phase modulating metasurface. Superlattices and Microstructures, 114, 75-81(2018).

    [46] C Pfeiffer, A Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 110, 197401(2013).

    [47] Shulin Sun, Qiong He, Shiyi Xiao. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 11, 426-431(2012).

    [48] Jiao Lin, J B Mueller, Qian Wang. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [49] Lingling Huang, Xianzhong Chen, Benfeng Bai. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2, e70-e70(2013).

    [50] A Pors, M G Nielsen, T Bernardin. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light: Science & Applications, 3, e197-e197(2014).

    [51] Wujiong Sun, Qiong He, Shulin Sun. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science & Applications, 5, e16003-e16003(2016).

    [52] Fei Ding, R Deshpande, S I Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light: Science & Applications, 7, 17178-17178(2018).

    [53] Xin Li, Shiyi Xiao, Bengeng Cai. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 37, 4940-4942(2012).

    [54] F Aieta, P Genevet, M A Kats. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 12, 4932-4936(2012).

    [55] Xingjie Ni, S Ishii, A V Kildishev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications, 2, e72-e72(2013).

    [56] Zhiping Yin, Qun Zheng, Kuiyuan Wang. Tunable dual-band terahertz lens based on stacked graphene metasurfaces. Optical Communications, 429, 41-45(2018).

    [57] Hongping Zhou, Lei Chen, Fei Shen. A broadband achromatic metalens in mid-infrared region. Physical Review Applied, 11, 024046(2019).

    [58] A Pors, M G Nielsen, R L Eriksen. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Letters, 13, 829-834(2013).

    [59] Junxiao Zhou, Haoliang Qian, Guangwei Hu. Broadband photonic spin Hall meta-lens. ACS Nano, 12, 82-88(2018).

    [60] M Khorasaninejad, Weiting Chen, R C Devlin. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [61] A Arbabi, E Arbabi, S M Kamali. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nature Communications, 7, 1-9(2016).

    [62] Wei Wang, Zehan Zhao, Zhongyi Guo. Spin-selected dual-wavelength plasmonic metalenses. Nanomaterials, 9, 761-770(2019).

    [63] M Khorasaninejad, K B Crozier. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nature Communications, 5, 1-6(2014).

    [64] Shuming Wang, Pin Chieh Wu, V C Su. Broadband achromatic optical metasurface devices. Nature Communications, 8, 1-9(2017).

    [65] Xingjie Ni, A V Kildishev, V M Shalaev. Metasurface holograms for visible light. Nature Communications, 4, 2807(2013).

    [66] Weiting Chen, Kuangyu Yang, Chih-Ming Wang. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 14, 225-230(2014).

    [67] Lingling Huang, Xianzhong Chen, H Mühlenbernd. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications, 4, 1-8(2013).

    [68] Guoxing Zheng, H Mühlenbernd, M Kenney. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 10, 308-312(2015).

    [69] Dandan Wen, Fuyong Yue, Guixin Li. Helicity multiplexed broadband metasurface holograms. Nature Communications, 6, 1-7(2015).

    [70] M Khorasaninejad, A Ambrosio, P Kanhaiya. Broadband and chiral binary dielectric meta-holograms. Science Advances, 2, e1501258(2016).

    [71] Rongzhen Li, Fei Shen, Yongxuan Sun. Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray. Journal of Physics D: Applied Physics, 49, 145101-145107(2016).

    [72] Yang Zhao, Alù Andrea. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Letters, 13, 1086-1091(2013).

    [73] A Pors, M G Nielsen, S I Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Optics Letters, 38, 513-515(2013).

    [74] Yuanmu Yang, Wenyi Wang, P Moitra. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 14, 1394-1399(2014).

    [75] Zhiping Yin, Fujia Chen, Lie Zhu. High-efficience dielectric metasurfaces for simultaneously engineering polarization and wavefront. Journal of Material Chemistry C, 6, 6354-6359(2018).

    [76] Fei Ding, Zhouxian Wang, Sailing He. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 9, 4111-4119(2015).

    [77] Pin Chieh Wu, Weiyi Tsai, Weiting Chen. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Letters, 17, 445-452(2017).

    [78] Fei Shen, Qianlong Kang, Jingjing Wang. Dielectric metasurface-based high-efficiency mid-infrared optical filter. Nanomaterials, 8, 938(2018).

    [79] Jingjing Wang, Kai Guo, Zhongyi Guo. THz filter based on the Si microdisk array. AIP Advances, 9, 045106(2019).

    [80] Nanfang Yu, F Aieta, P Genevet. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 12, 6328-6333(2012).

    [81] R Blanchard, G Aoust, P Genevet. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B, 85, 155457(2012).

    [82] B Groever, W T Chen, F Capasso. Meta-lens doublet in the visible region. Nano Letters, 17, 4902-4907(2017).

    [83] Jingpei Hu, Xiaonan Zhao, Yu Lin. All-dielectric metasurface circular dichroism waveplate. Scientific Reports, 7, 41893(2017).

    [84] S Hermon, A Ma, F Yue. Metasurface hologram for polarization measurement. Optics Letters, 44, 4436-4438(2019).

    [85] Weibin Chen, D C Abeysinghe, R L Nelson. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Letters, 10, 2075-2079(2010).

    [86] Shuangyang Yang, Weibin Chen, R L Nelson. Miniature circular polarization analyzer with spiral plasmonic lens. Optics Letters, 34, 3047-3049(2009).

    [87] Junjie Miao, Yongsheng Wang, Chuanfei Guo. Plasmonic lens with multiple-turn spiral nano-structures. Plasmonics, 6, 235-239(2011).

    [88] Junjie Miao, Yongsheng Wang, Chuanfei Guo. Far-field focusing of spiral plasmonic lens. Plasmonics, 7, 377-381(2012).

    [89] Jingran Zhang, Zhongyi Guo, Rongzhen Li. Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics, 10, 1255-1261(2015).

    [90] Jingran Zhang, Zhongyi Guo, Rongzhen Li. Circular polarization analyzer based on an Archimedean nano-pinholes array. Optics Express, 23, 30523-30531(2015).

    [91] Chuanbao Liu, Yang Bai, Qian Zhao. Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth. Scientific Reports, 6, 34819-32825(2016).

    [92] Wei Wang, Zhongyi Guo, Rongzhen Li. L-shaped metasurface for both the linear and circular polarization conversions. Journal of Optics, 17, 65103-65109(2015).

    [93] Wei Wang, Zhongyi Guo, Rongzhen Li. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens. Photonics Research, 3, 68-71(2015).

    [94] Wei Wang, Yan Li, Zhongyi Guo. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation. Journal of Optics, 17, 45102-45109(2015).

    [95] Rongzhen Li, Zhongyi Guo, Wei Wang. Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Optics Express, 22, 27968-27975(2014).

    [96] Rongzhen Li, Zhongyi Guo, Wei Wang. High-efficiency cross polarization converters by plasmonic metasurface. Plasmonics, 10, 1167-1172(2015).

    [97] Ming Kang, Tianhua Feng, Huitian Wang. Wave front engineering from an array of thin aperture antennas. Optics Express, 20, 15882-15890(2012).

    [98] Rongzhen Li, Zhongyi Guo, Wei Wang. Arbitrary focusing lens by holographic metasurface. Photonics Research, 3, 252-255(2015).

    [99] A Arbabi, Y Horie, M Bagheri. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 10, 937(2015).

    [100] E Arbabi, A Arbabi, S M Kamali. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 3, 628-633(2016).

    [101] E Arbabi, S M Kamali, A Arbabi. Full-Stokes imaging polarimetry using dielectric metasurfaces. Acs Photonics, 5, 3132-3140(2018).

    [102] Zhongyi Guo, Lie Zhu, Fei Shen. Dielectric metasurface based high-efficiency polarization splitters. RSC Advances, 7, 9872-9879(2017).

    [103] Zhongyi Guo, Lie Zhu, Kai Guo. High-order dielectric metasurfaces for high-efficiency polarization beam splitters and optical vortex generators. Nanoscale Research Letters, 12, 1-8(2017).

    [104] Zhongyi Guo, Lihua Tian, Fei Shen. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface. Journal of Physics D: Applied Physics, 50, 254001(2017).

    [105] Jingjing Wang, Jian Zhou, Kai Guo. High-efficiency terahertz dual-function devices based on the dielectric metasurface. Superlattices and Microstructures, 120, 759-765(2018).

    [106] Zhongyi Guo, Haisheng Xu, Kai Guo. High-efficiency visible transmitting polarizations devices based on the GaN metasurface. Nanomaterials, 8, 333(2018).

    [107] Kai Guo, Haisheng Xu, Zhiyong Peng. High-efficiency full-vector polarization analyzer based on GaN metasurface. IEEE Sensors Journal, 19, 3654-3659(2018).

    [108] M Khorasaninejad, W T Chen, A Y Zhu. Multispectral chiral imaging with a metalens. Nano Letters, 16, 4595-4600(2016).

    [109] N A Rubin, G D’Aversa, P Chevalier. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, 1-8(2019).

    [110] P C Wu, J W Chen, C W Yin. Visible metasurfaces for on-chip polarimetry. Acs Photonics, 5, 2568-2573(2017).

    [111] Zhenyu Yang, Zhaokun Wang, Yuxi Wang. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nature Communications, 9, 1-7(2018).

    [112] J P Mueller, Balthasar, Noah A Rubin, Robert C Devlin. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 118, 113901(2017).

    [113] Yueqiang Hu, Ling Li, Yujie Wang. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Letters, 20, 994-1002(2020).

    [114] Fuyong Yue, Chunmei Zhang, Xiaofei Zang. High-resolution grayscale image hidden in a laser beam. Light: Science & Applications, 7, 17129(2018).

    [115] Yuttanna Intaravanne, Xianzhong Chen. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics, 9, 1003-1014(2020).

    [116] Hu Yueqiang, Wang Xudong, Luo Xuhao, et al. Alldielectric metasurfaces f polarization manipulation: principles emerging applications[J]. Nanophotonics 2020, Ahead of Print, DOI: 10.1515nanoph20200220.

    CLP Journals

    [1] Shijie Chen, Chunhui Niu, Xiaoying Li, Yong Lv. Cat eye echo characteristics of optical imaging system in CCD damage process[J]. Infrared and Laser Engineering, 2021, 50(9): 20200425

    [2] Dekui Li, Chenxiang Xu, Bing Lin, Kai Guo, Ning Zhang, Jun Gao, Zhongyi Guo. Research progress on theory and applications of index of polarization purities[J]. Infrared and Laser Engineering, 2022, 51(3): 20210373

    Zhongyi Guo, Qianlong Kang, Zhiyong Peng, Yuemeng Cui, Huasong Liu, Jun Gao, Kai Guo. Progress of polarization-information detection technology based on manipulations of metasurface[J]. Infrared and Laser Engineering, 2020, 49(9): 20201041
    Download Citation