• Acta Optica Sinica
  • Vol. 38, Issue 3, 328013 (2018)
Zheng Wenxue, Zheng Chuantao*, Yao Dan, Yang Shuo, Dang Peipei, and Wang Yiding
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/AOS201838.0328013 Cite this Article Set citation alerts
    Zheng Wenxue, Zheng Chuantao, Yao Dan, Yang Shuo, Dang Peipei, Wang Yiding. Development of a Mid-Infrared Interband Cascade Laser Methane Sensor[J]. Acta Optica Sinica, 2018, 38(3): 328013 Copy Citation Text show less
    References

    [1] Balzter H, Gerard F F, George C T et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia[J]. Geophysical Research Letters, 32, L14709(2005). http://onlinelibrary.wiley.com/doi/10.1029/2005GL022526/pdf

    [2] Simpson I J, Rowland F S, Meinardi S et al. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane[J]. Geophysical Research Letters, 33, 126-136(2006). http://onlinelibrary.wiley.com/doi/10.1029/2006GL027330/full

    [3] Dong L, Wright J, Peters B et al. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen[J]. Applied Physics B, 107, 459-467(2012). http://link.springer.com/article/10.1007/s00340-012-4908-x

    [4] Leis J, Buttsworth D, Snook C et al. Detection of potentially explosive methane levels using a solid-state infrared source[J]. IEEE Transactions on Instrumentation & Measurement, 63, 3088-3095(2014). http://ieeexplore.ieee.org/document/6843979/

    [5] Triki M, Ba T N, Vicet A. Compact sensor for methane detection in the mid infrared region based on quartz enhanced photoacoustic spectroscopy[J]. Infrared Physics & Technology, 69, 74-80(2015). http://www.sciencedirect.com/science/article/pii/S1350449515000274

    [6] Köhring M, Huang S, Jahjah M et al. QCL-based TDLAS sensor for detection of NO toward emission measurements from ovarian cancer cells[J]. Applied Physics B, 117, 445-451(2014). http://link.springer.com/article/10.1007/s00340-014-5853-7

    [7] Ren W, Luo L, Tittel F K. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm[J]. Sensors and Actuators B-Chemical, 221, 1062-1068(2015). http://www.sciencedirect.com/science/article/pii/S0925400515301350

    [8] Lancaster D G, Weidner R, Richter D et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phase matched LiNbO3[J]. Optics Communications, 175, 461-468(2000). http://europepmc.org/abstract/MED/11543515

    [9] Lancaster D G, Dawes J M. Methane detection with a narrow-band source at 3.4 μm based on a Nd∶YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing[J]. Applied Optics, 35, 4041-4045(1996). http://europepmc.org/abstract/MED/21102808

    [10] Fischer C, Sigrist M W. Trace-gas sensing in the 3.0-μm region using a diode-based difference-frequency laser photoacoustic system[J]. Applied Physics B, 75, 305-310(2002). http://link.springer.com/article/10.1007/s00340-002-0982-9

    [11] Richter D, Lancaster D G, Curl R F et al. Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3[J]. Applied Physics B, 67, 347-350(1998). http://link.springer.com/article/10.1007/s003400050514

    [12] Petrov K P, Waltman S, Dlugokencky E J et al. Precise measurement of methane in air using diode-pumped 3.4-μm difference-frequency generation in PPLN[J]. Applied Physics B, 64, 567-572(1997). http://link.springer.com/article/10.1007/s003400050216

    [13] Silver J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods[J]. Applied Optics, 31, 707-717(1992). http://europepmc.org/abstract/MED/20733651

    [14] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 197-236(1998). http://www.sciencedirect.com/science/article/pii/S1386142597002278

    [15] Schilt S, Thévenaz L, Robert P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 42, 6728-6738(2003). http://www.ncbi.nlm.nih.gov/pubmed/14658477

    [16] Vurgaftman I, Bewley W W, Canedy C L et al. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2, 585(2011). http://europepmc.org/abstract/MED/22158440

    [17] Zheng C T, Ye W L, Li G L et al. Performance enhancement of a mid-infrared CH4 detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: theory, design and experiment[J]. Sensors and Actuators B-Chemical, 160, 389-398(2011). http://www.sciencedirect.com/science/article/pii/S0925400511007210

    [18] Li B, Zheng C T, Liu H F et al. Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe[J]. Sensors and Actuators B-Chemical, 225, 188-198(2016). http://www.sciencedirect.com/science/article/pii/S0925400515306195

    Zheng Wenxue, Zheng Chuantao, Yao Dan, Yang Shuo, Dang Peipei, Wang Yiding. Development of a Mid-Infrared Interband Cascade Laser Methane Sensor[J]. Acta Optica Sinica, 2018, 38(3): 328013
    Download Citation