• Photonics Research
  • Vol. 8, Issue 8, 1260 (2020)
Risheng Cheng1, Sihao Wang1, Chang-Ling Zou1、2, and Hong X. Tang1、*
Author Affiliations
  • 1Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA
  • 2Department of Optics, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.1364/PRJ.390945 Cite this Article Set citation alerts
    Risheng Cheng, Sihao Wang, Chang-Ling Zou, Hong X. Tang. Design of a micrometer-long superconducting nanowire perfect absorber for efficient high-speed single-photon detection[J]. Photonics Research, 2020, 8(8): 1260 Copy Citation Text show less
    References

    [1] G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett., 79, 705-707(2001).

    [2] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [3] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics, 1, 343-348(2007).

    [4] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360, 285-291(2018).

    [5] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F. Z. Li. Satellite-to-ground quantum key distribution. Nature, 549, 43-47(2017).

    [6] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam. Detecting single infrared photons with 93% system efficiency. Nat. Photonics, 7, 210-214(2013).

    [7] W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, X. Xie. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron., 60, 120314(2017).

    [8] I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, S. N. Dorenbos. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photon., 2, 111301(2017).

    [9] V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, S. Nam. Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors. Proc. SPIE, 10978, 109780N(2019).

    [10] F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, K. K. Berggren. Efficient single photon detection from 500  nm to 5  μm wavelength. Nano Lett., 12, 4799-4804(2012).

    [11] R. Cheng, C.-L. Zou, X. Guo, S. Wang, X. Han, H. X. Tang. Broadband on-chip single-photon spectrometer. Nat. Commun., 10, 1(2019).

    [12] J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W. H. Pernice, C. Rockstuhl. Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 5, 658-665(2018).

    [13] W. Zhang, J. Huang, C. Zhang, L. You, C. Lv, L. Zhang, H. Li, Z. Wang, X. Xie. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5  GHz. IEEE Trans. Appl. Supercond., 29, 2200204(2019).

    [14] I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, S. N. Dorenbos. A single-photon detector with high efficiency and sub-10 ps time resolution(2018).

    [15] M. Caloz, B. Korzh, E. Ramirez, C. Schönenberger, R. J. Warburton, H. Zbinden, M. D. Shaw, F. Bussières. Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors(2019).

    [16] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, K. K. Berggren. Demonstration of sub-3  ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [17] C. Schuck, W. H. Pernice, H. X. Tang. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep., 3, 1893(2013).

    [18] H. Shibata, K. Shimizu, H. Takesue, Y. Tokura. Ultimate low system dark-count rate for superconducting nanowire single-photon detector. Opt. Lett., 40, 3428-3431(2015).

    [19] R. Cheng, M. Poot, X. Guo, L. Fan, H. X. Tang. Large-area superconducting nanowire single-photon detector with double-stage avalanche structure. IEEE Trans. Appl. Supercond., 27, 2200805(2017).

    [20] A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’Tsman, B. Voronov. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett., 88, 111116(2006).

    [21] J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, A. Fiore. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett., 99, 181110(2011).

    [22] W. H. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, H. Tang. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun., 3, 1325(2012).

    [23] C. Schuck, W. H. P. Pernice, H. X. Tang. NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Appl. Phys. Lett., 102, 051101(2013).

    [24] V. Kovalyuk, W. Hartmann, O. Kahl, N. Kaurova, A. Korneev, G. Goltsman, W. Pernice. Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits. Opt. Express, 21, 22683-22692(2013).

    [25] D. Sahin, A. Gaggero, J.-W. Weber, I. Agafonov, M. A. Verheijen, F. Mattioli, J. Beetz, M. Kamp, S. Höfling, M. C. van de Sanden, R. Leoni. Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties. IEEE J. Sel. Top. Quantum Electron., 21, 3800210(2015).

    [26] O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, W. H. Pernice. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Sci. Rep., 5, 10941(2015).

    [27] P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, W. Pernice. Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Sci. Appl., 4, e338(2015).

    [28] F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun., 6, 5873(2015).

    [29] J. Li, R. A. Kirkwood, L. J. Baker, D. Bosworth, K. Erotokritou, A. Banerjee, R. M. Heath, C. M. Natarajan, Z. H. Barber, M. Sorel, R. H. Hadfield. Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt. Express, 24, 13931-13938(2016).

    [30] S. Ferrari, C. Schuck, W. Pernice. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics, 7, 1725-1758(2018).

    [31] A. Gaggero, F. Martini, F. Mattioli, F. Chiarello, R. Cernansky, A. Politi, R. Leoni. Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires. Optica, 6, 823-828(2019).

    [32] A. Vetter, S. Ferrari, P. Rath, R. Alaee, O. Kahl, V. Kovalyuk, S. Diewald, G. N. Goltsman, A. Korneev, C. Rockstuhl, W. H. Pernice. Cavity-enhanced and ultrafast superconducting single-photon detectors. Nano Lett., 16, 7085-7092(2016).

    [33] N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, K. K. Berggren. Superconducting nanowire detector jitter limited by detector geometry. Appl. Phys. Lett., 109, 152601(2016).

    [34] M. K. Akhlaghi, E. Schelew, J. F. Young. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Commun., 6, 8233(2015).

    [35] N. A. Tyler, J. Barreto, G. E. Villarreal-Garcia, D. Bonneau, D. Sahin, J. L. O’Brien, M. G. Thompson. Modelling superconducting nanowire single photon detectors in a waveguide cavity. Opt. Express, 24, 8797-8808(2016).

    [36] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [37] A. Yariv. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett., 14, 483-485(2002).

    [38] Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, X. Xie. Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%. IEEE Trans. Appl. Supercond., 27, 2200904(2016).

    [39] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2011).

    [40] X. Guo, C.-L. Zou, C. Schuck, H. Jung, R. Cheng, H. X. Tang. Parametric down-conversion photon-pair source on a nanophotonic chip. Light: Sci. Appl., 6, e16249(2017).

    [41] L. Fan, C.-L. Zou, R. Cheng, X. Guo, X. Han, Z. Gong, S. Wang, H. X. Tang. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv., 4, eaar4994(2018).

    [42] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [43] Y. Akahane, T. Asano, B.-S. Song, S. Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [44] C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, H. X. Tang. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express, 19, 10462-10470(2011).

    [45] C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys., 14, 095014(2012).

    [46] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [47] A. A. Sayem, R. Cheng, S. Wang, H. X. Tang. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors(2019).

    [48] L. Chang, A. Boes, X. Guo, D. T. Spencer, M. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev., 12, 1800149(2018).

    [49] V. Anant, A. J. Kerman, E. A. Dauler, J. K. Yang, K. M. Rosfjord, K. K. Berggren. Optical properties of superconducting nanowire single-photon detectors. Opt. Express, 16, 10750-10761(2008).

    [50] R. Cheng, S. Wang, H. X. Tang. Superconducting nanowire single-photon detectors fabricated from atomic-layer-deposited NbN. Appl. Phys. Lett., 115, 241101(2019).

    [51] J. R. Clem, K. K. Berggren. Geometry-dependent critical currents in superconducting nanocircuits. Phys. Rev. B, 84, 174510(2011).

    [52] Q. Guo, H. Li, L. You, W. Zhang, L. Zhang, Z. Wang, X. Xie, M. Qi. Single photon detector with high polarization sensitivity. Sci. Rep., 5, 9616(2015).

    [53] S. Miki, M. Yabuno, T. Yamashita, H. Terai. Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector. Opt. Express, 25, 6796-6804(2017).

    [54] X. Hou, N. Yao, L. You, H. Li, Y. Wang, W. Zhang, H. Wang, X. Liu, W. Fang, L. Tong, Z. Wang, X. Xie. Ultra-broadband microfiber-coupled superconducting single-photon detector. Opt. Express, 27, 25241-25250(2019).

    [55] D. V. Reddy, A. E. Lita, S. W. Nam, R. P. Mirin, V. B. Verma. Achieving 98% system efficiency at 1550 nm in superconducting nanowire single photon detectors. Rochester Conference on Coherence and Quantum Optics (CQO-11), W2B.2(2019).

    [56] M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, F. Bussières. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl. Phys. Lett., 112, 061103(2018).

    [57] J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun., 327, 49-55(2014).

    [58] C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, S. Höfling. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev., 10, 870-894(2016).

    [59] M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. llin, M. Jetter, M. Siegel, P. Michler. Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor-superconductor platform. Nano Lett., 18, 6892-6897(2018).

    Risheng Cheng, Sihao Wang, Chang-Ling Zou, Hong X. Tang. Design of a micrometer-long superconducting nanowire perfect absorber for efficient high-speed single-photon detection[J]. Photonics Research, 2020, 8(8): 1260
    Download Citation