• Nano-Micro Letters
  • Vol. 15, Issue 1, 239 (2023)
Xiaoyu Han1、2、†, Qimanguli Saiding1、†, Xiaolu Cai3、†, Yi Xiao4, Peng Wang2, Zhengwei Cai1, Xuan Gong5, Weiming Gong2、*, Xingcai Zhang4、**, and Wenguo Cui1、***
Author Affiliations
  • 1Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People’s Republic of China
  • 2Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, 250013 Shandong, People’s Republic of China
  • 3Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, People’s Republic of China
  • 4School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
  • 5University of Texas Southwestern Medical Center, Dallas, TX 75390-9096, USA
  • show less
    DOI: 10.1007/s40820-023-01187-2 Cite this Article
    Xiaoyu Han, Qimanguli Saiding, Xiaolu Cai, Yi Xiao, Peng Wang, Zhengwei Cai, Xuan Gong, Weiming Gong, Xingcai Zhang, Wenguo Cui. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds[J]. Nano-Micro Letters, 2023, 15(1): 239 Copy Citation Text show less
    References

    [1] B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini et al., Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431), 1075–1079 (2019).

    [2] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, US4575330A, (1986)

    [3] A.J. Hart, A. Rao, How to print a 3D object all at once. Science 363(6431), 1042–1043 (2019).

    [4] K. Liang, S. Carmone, D. Brambilla, J.C. Leroux, 3D printing of a wearable personalized oral delivery device: A first-in-human study. Sci. Adv. 4(5), eaat2544 (2018).

    [5] A. Lee, A.R. Hudson, D.J. Shiwarski, J.W. Tashman, T.J. Hinton et al., 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452), 482–487 (2019).

    [6] R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540(763), 371–378 (2016).

    [7] S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014).

    [8] S.V. Murphy, P. De Coppi, A. Atala, Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 4(4), 370–380 (2020).

    [9] J.H. Li, M. Pumera, 3D printing of functional microrobots. Chem. Soc. Rev 50(4), 2794–2838 (2021).

    [10] L.L. Ouyang, J.P.K. Armstrong, Y.Y. Lin, J.P. Wojciechowski, C. Lee-Reeves et al., Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv. 6(38), 5529 (2020).

    [11] A. Urciuolo, I. Poli, L. Brandolino, P. Raffa, V. Scattolini et al., Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4(9), 901–915 (2020).

    [12] L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto et al., Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3(5), 21–37 (2018).

    [13] S. Tibbits, The emergence of "4D printing", TED Talk, USA, 10, (2013)

    [14] Z. Ding, C. Yuan, X. Peng, T. Wang, H.J. Qi et al., Direct 4D printing via active composite materials. Sci. Adv. 3(4), e1602890 (2017).

    [15] E.A. Gillaspie, J.S. Matsumoto, N.E. Morris, R.J. Downey, K.R. Shen et al., From 3-dimensional printing to 5-dimensional printing: enhancing thoracic surgical planning and resection of complex tumors. Ann. Thorac. Surg. 101(5), 1958–1962 (2016).

    [16] S.K. Georgantzinos, G.I. Giannopoulos, P.A. Bakalis, Additive manufacturing for effective smart structures: the idea of 6D printing. J. Composites Sci. 5, 119 (2021).

    [17] J.F. Liao, R.X. Han, Y.Z. Wu, Z.Y. Qian, Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 9(1), 18 (2021).

    [18] L.G. Griffith, G. Naughton, Tissue engineering: current challenges and expanding opportunities. Science 295(5557), 1009–1014 (2002).

    [19] L. Claes, S. Recknagel, A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8(3), 133–143 (2012).

    [20] A. Gruneboom, I. Hawwari, D. Weidner, S. Culemann, S. Muller et al., A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat. Metab. 1(2), 236–250 (2019).

    [21] B. Grigoryan, S. Paulsen, D. Corbett, D. Sazer, C. Fortin et al., BIOMEDICINE Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364(6439), 458–464 (2019).

    [22] E. Bueno, J. Glowacki, Cell-free and cell-based approaches for bone regeneration. Nat. Rev. Rheumatol. 5(12), 685–697 (2009).

    [23] C. Kim, S. Hong, D. Shin, S. An, X. Zhang, W. Jhe, Sorting gold and sand (Silica) using atomic force microscope-based dielectrophoresis. Nano-Micro Lett. 14, 13 (2022).

    [24] J. Gong, C.C.L. Schuurmans, A.M.V. Genderen, X. Cao, W. Li et al., Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat. Commun. 11(1), 1267 (2020).

    [25] Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31(8), 2008020 (2021).

    [26] S. Camarero-Espinosa, L. Moroni, Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat. Commun. 12(1), 1031 (2021).

    [27] M.A. Skylar-Scott, S.G.M. Uzel, L.L. Nam, J.H. Ahrens, R.L. Truby, J. Lewis et al., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5(9), eaaw2459 (2019).

    [28] A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis et al., Biomimetic 4D printing. Nat. Mater. 15(4), 413–418 (2016).

    [29] A.V. Vasiliadis, N.K. Koukoulias, From three-dimensional (3D)- to 6D-printing technology in orthopedics: science fiction or scientific reality? J. Funct. Biomater. 13(3), 101 (2022).

    [30] S. Nida, J.A. Moses, C. Anandharamakrishnan, Emerging applications of 5D/6D printing in the food industry. J. Agric. Food. Res. 10, 100392 (2022).

    [31] P. Carmeliet, R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347), 298–307 (2011).

    [32] R.A. Wimmer, A. Leopoldi, M. Aichinger, N. Wick, B. Hantusch et al., Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565(7740), 505–510 (2019).

    [33] H. Bae, A.S. Puranik, R. Gauvin, F. Edalat, B. Carrillo-Conde et al., Building vascular networks. Sci. Transl. Med. 4(160), 160ps23 (2012).

    [34] X. Wang, J. Jin, R. Hou, M. Zhou, X. Mou et al., Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl. Bio Mater. 3(1), 735–746 (2019).

    [35] L. Jin, X. Guo, D. Gao, C. Wu, B. Hu et al., NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater. 13(1), 24 (2021).

    [36] A.P. Kusumbe, S.K. Ramasamy, T. Itkin, M.A. Mae, U.H. Langen et al., Age-dependent modulation of vascular niches for haematopoietic stem cells. Nat. Med. 532, 380–384 (2016).

    [37] A.P. Kusumbe, S.K. Ramasamy, R.H. Adams, Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492), 323–328 (2014).

    [38] R.K. Jain, Molecular regulation of vessel maturation. Nat. Med. 9(6), 685–693 (2003).

    [39] C. Margadant, Positive and negative feedback mechanisms controlling tip/stalk cell identity during sprouting angiogenesis. Angiogenesis 23(2), 75–77 (2020).

    [40] R.O. Alabi, G. Farber, C.P. Blobel, Intriguing roles for endothelial ADAM10/notch signaling in the development of organ-specific vascular beds. Physiol. Rev. 98(4), 2025–2061 (2018).

    [41] H.G. Augustin, G.Y. Koh, Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357(6353), eaal2379 (2017).

    [42] F. Jia, L. Ruan, C. Du, Y. Liu, X. Cai et al., The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 296, 122059 (2023).

    [43] J. Zhou, Z. Zhang, J. Joseph, X. Zhang, B.E. Ferdows et al., Biomaterials and nanomedicine for bone regeneration: progress and future prospects. Exploration 1(2), 20210011 (2021).

    [44] F.J.A. de Paula, C.J. Rosen, Marrow adipocytes: origin, structure, and function. Annu. Rev. Physiol. 82, 461–484 (2020).

    [45] M. Murshed, Mechanism of bone mineralization. Cold Spring Harb Perspect Med. 8(12), a0311229 (2018).

    [46] J.M. Kanczler, R.O. Oreffo, Osteogenesis and angiogenesis: The potential for engineering bone. Eur. Cell. Mater. 15(4), 100–114 (2008).

    [47] D. Lopes, C. Martins-Cruz, M.B. Oliveira, J.F. Mano, Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 185, 240–275 (2018).

    [48] K.K. Sivaraj, R.H. Adams, Blood vessel formation and function in bone. Development 143(15), 2706–2715 (2016).

    [49] P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000).

    [50] J.K. Zhang, J. Pan, W. Jing, Motivating role of type H vessels in bone regeneration. Cell Prolif 53(9), e12874 (2020).

    [51] N.G. Schott, N.E. Friend, J.P. Stegemann, Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng. Part. B-Rev. 27(3), 199–214 (2020).

    [52] L. Wu, Y. Gu, L. Liu, J. Tang, J. Mao et al., Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials 227, 119555 (2019).

    [53] A. Petersen, A. Princ, G. Korus, A. Ellinghaus, H. Leemhuis et al., A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018).

    [54] A. Salhotra, H.N. Shah, B. Levi, M.T. Longaker, Mechanisms of bone development and repair. Nat. Rev. Mol. Cell. Biol. 21(11), 696–711 (2020).

    [55] M. Marchand, C. Monnot, L. Muller, S. Germain, Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin. Cell. Dev. Biol. 89, 147–156 (2019).

    [56] M. Simons, E. Gordon, L. Claesson-Welsh, Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell. Bio. 17(10), 611–625 (2016).

    [57] J.P. Fu, A. Warmflash, M.P. Lutolf, Stem-cell-based embryo models for fundamental research and translation. Nat. Mater. 20(2), 132–144 (2021).

    [58] H.C.H. Ko, B.K. Milthorpe, C. McFarland, Engineering thick tissues: the vascularisation problem. Eur. Cell. Mater. 14, 1–18 (2007).

    [59] C.S. Lee, H. Hwang, S. Kim, J.B. Fan, T. Aghaloo et al., Inspired by Nature: facile design of nanoclay-organic hydrogel bone sealant with multifunctional properties for robust bone regeneration. Adv. Funct. Mater. 30(43), 2003717 (2020).

    [60] N. Kohli, S. Ho, S.J. Brown, P. Sawadkar, V. Sharma et al., Bone remodelling in vitro: where are we headed? A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone 110, 38–46 (2018).

    [61] C. Gerri, R. Marín-Juez, M. Marass, A. Marks, H. Maischein et al., Hif-1 alpha regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat. Commun. 8, 15492 (2017).

    [62] Q.Q. Yao, Y.X. Liu, J.N. Tao, K.M. Baumgarten, H. Sun, Hypoxia-mimicking nanofibrous scaffolds promote endogenous bone regeneration. ACS. Appl. Mater. Interfaces 8, 32450–32459 (2016).

    [63] Y. Wang, C. Wan, L. Deng, X. Liu, X. Cao et al., The hypoxia-inducible factor a pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626 (2007).

    [64] G.D.G. Barabaschi, V. Manoharan, Q. Li, L.E. Bertassoni et al., Engineering pre-vascularized scaffolds for bone regeneration. Adv. Exp. Med. Biol. (2015).

    [65] M.E. Pitulescu, I. Schmidt, B.D. Giaimo, T. Antoine, F. Berkenfeld et al., Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell. Biol. 19(8), 915–927 (2017).

    [66] J. Li, Z. Li, D. Chu, L. Jin, X. Zhang et al., Fabrication and biocompatibility of core-shell structured magnetic fibrous scaffold. J. Biomed. Nanotechnol. 15, 500–506 (2019).

    [67] P.J. Wang, Y.Z. Sun, X.Q. Shi, H.X. Shen, H.H. Ning et al., 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes. Manuf. 4(2), 344–378 (2021).

    [68] S. Yin, W.J. Zhang, Z.Y. Zhang, X.Q. Jiang, Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv. Healthc. Mater. 8(10), e1801433 (2019).

    [69] D.Y. Zhao, W.B. Jiang, Y. Wang, C.D. Wang, X.L. Zhang, Three-dimensional-printed poly-l-lactic acid scaffolds with different pore sizes influence periosteal distraction osteogenesis of a rabbit skull. Biomed. Res. Int. 2020, 7381391 (2020).

    [70] I. Matai, G. Kaur, A. Seyedsalehi, A. McClinton, C. Laurencin, Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    [71] S. Bose, N. Sarkar, Natural medicine compounds in bone tissue engineering. Trends Biotechnol. 38, 404–417 (2020).

    [72] S.Y. Hann, H.T. Cui, T. Esworthy, S.D. Miao, X. Zhou et al., Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl. Res. 211, 46–63 (2019).

    [73] P. Chandra, A. Atala, Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin. Sci. 133, 1115–1135 (2019).

    [74] T. Wang, Y.K. Zhai, M. Nuzzo, X. Yang, Y. Yang et al., Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 182, 279–288 (2018).

    [75] A. Marrella, T.Y. Lee, D.H. Lee, S. Karuthedom, D. Syla et al., Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today 21(4), 362–376 (2018).

    [76] M.O. Wang, C.E. Vorwald, M.L. Dreher, E.J. Mott, M.H. Cheng et al., Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 27(1), 138–144 (2015).

    [77] K. Schmidt-Bleek, A. Petersen, A. Dienelt, C. Schwarz, G.N. Duda et al., Initiation and early control of tissue regeneration: bone healing as a model system for tissue regeneration. Expert Opin. Biol. Ther. 14, 247–259 (2014).

    [78] Z. Amini, R. Lari, Tissue cell, a systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 69, 101494 (2021).

    [79] W. Park, G. Gao, D.W. Cho, Tissue-specific decellularized extracellular matrix bioinks for musculoskeletal tissue regeneration and modeling using 3d bioprinting technology. Int. J. Mol. Sci. 22(15), 7837 (2021).

    [80] Z. Yazdanpanah, J.D. Zahra, D.M.L. Cooper, X.B. Chen, 3D bioprinted scaffolds for bone tissue engineering: state-of-the-art and emerging technologies. Front. Bioeng. Biotech. 10, 824156 (2022).

    [81] X. Chatzistavrou, P. Newby, A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, in Bioactive Glasses. (Elsevier, 2011), pp.107–128.

    [82] D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4), 245–260 (2007).

    [83] S.L. Wu, X.M. Liu, K.W.K. Yeung, C.S. Liu, X.J. Yang, Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R-Rep. 80, 1–36 (2014).

    [84] T. Yang, Z.C. Hao, Z.Z. Wu, B.X. Xu, J.C. Liu et al., An engineered lamellar bone mimicking full-scale hierarchical architecture for bone regeneration. Bioact. Mater. 27, 181–199 (2023).

    [85] B. Safari, A. Aghanejad, L. Roshangar, S. Davaran, Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf. B 198, 111462 (2021).

    [86] A. Grosso, A. Lunger, M.G. Burger, P.S. Briquez, F.C.S. Mai et al., VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen. Med. 8(1), 15 (2023).

    [87] S.Y. Lv, X. Yuan, J. Xiao, X.L. Jiang, Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair. Carbohyd. Polym. 313, 120888 (2023).

    [88] D.J. Hadjidakis, I.I. Androulakis, Bone remodeling. Ann. New York Acad. Sci. 1092, 385–396 (2007).

    [89] R. Florencio-Silva, G.R.D. Sasso, E. Sasso-Cerri, M.J. Simões, P.S. Cerri, Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed. Res. Int. 2015, 421746 (2015).

    [90] M.G. Burger, A. Grosso, P.S. Briquez, G.M.E. Born, A. Lunger et al., Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater. 149, 111–125 (2022).

    [91] Z. Amini, R. Lari, A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 69, 101494 (2021).

    [92] X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R.H. Ding, Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Func. Mater. 26, 2809–2819 (2016).

    [93] B.L. Norris, M. Vanderkarr, C. Sparks, A. Chitnis, B. Ray et al., Treatments, cost and healthcare utilization of patients with segmental bone defects. Injury 52(10), 2935–2940 (2021).

    [94] G. Battafarano, M. Rossi, V. De Martino, F. Marampon, L. Borro et al., Strategies for bone regeneration: from graft to tissue engineering. Int. J. Mol. Sci. 22(3), 1128 (2021).

    [95] Q. Zhang, W. Wu, C.Y. Qian, W.S. Xiao, H. Zhu et al., Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater. Sci. Eng. C Mater. Biol. Appl. 103, 109858 (2019).

    [96] L.M. Ma, S. Cheng, X.F. Ji, Y. Zhou, Y. Zhang et al., Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis. Mater. Sci. Eng. C Mater. Biol. Appl. 117, 111303 (2020).

    [97] C. Polley, T. Distler, R. Detsch, H. Lund, A. Springer et al., 3D printing of piezoelectric barium titanate-hydroxyapatite scaffolds with interconnected porosity for bone tissue engineering. Materials 13(7), 1773 (2020).

    [98] D.Y. Zhao, T.T. Zhu, J. Li, L.G. Cui, Z. Zhang, Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact. Mater. 6(2), 346–360 (2021).

    [99] H.H.K. Xu, P. Wang, L. Wang, C.Y. Bao, Q.M. Chen et al., Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 17056 (2017).

    [100] W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2(4), 224–247 (2017).

    [101] K.M. Emara, R.A. Diab, A.K. Emara, Recent biological trends in management of fracture non-union. World J. Orthop. 6(8), 623–628 (2015).

    [102] R. Chen, J. Wang, C.S. Liu, Biomaterials act as enhancers of growth factors in bone regeneration. Adv. Func. Mater. 26(48), 8810–8823 (2016).

    [103] Y.F. Yan, H. Chen, H.B. Zhang, C.J. Guo, K. Yang et al., Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 190, 97–110 (2019).

    [104] X.Y. Han, M.J. Sun, B. Chen, Q. Saiding, J.Y. Zhang et al., Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact. Mater. 6, 1639–1652 (2021).

    [105] L. Valot, J. Martinez, A. Mehdi, G. Subra, Chemical insights into bioinks for 3D printing. Chem. Soc. Rev. 48(15), 4049–4086 (2019).

    [106] Y. Chen, W.L. Li, C. Zhang, Z.Y. Wu, J. Liu, Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv. Healthc. Mater. 9(23), e2000724 (2020).

    [107] X.Q. Zheng, J.F. Huang, J.L. Lin, D.J. Yang, T.Z. Xu et al., 3D bioprinting in orthopedics translational research. J. Biomater. Sci. Polym. Ed. 30(13), 1172–1187 (2019).

    [108] Y. Wang et al., Nature-inspired micropatterns. Nat. Rev. Methods Primers (2023).

    [109] U. Ghosh, S. Ning, Y.Z. Wang, Y.L. Kong, Addressing unmet clinical needs with 3D printing technologies. Adv. Healthc. Mater. 7(17), e1800417 (2018).

    [110] V.K. Lee, D.Y. Kim, H.G. Ngo, Y. Lee, L. Seo et al., Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092–8102 (2014).

    [111] X. Cui, T. Boland, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30, 6221–6227 (2009).

    [112] Z. Wang, W. Kapadia, C.D. Li, F. Lin, R.F. Pereira et al., Tissue-specific engineering: 3D bioprinting in regenerative medicine. J. Control. Release 329, 237–256 (2021).

    [113] F. Zheng, B. Derby, J.S. Wong, Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. Biofabrication 13(3), 035006 (2020).

    [114] H. Balakrishnan, F. Badar, E.H. Doeven, J.I. Novak, A. Merenda et al., 3D printing: an alternative microfabrication approach with unprecedented opportunities in design. Anal. Chem. 93(1), 350–366 (2021).

    [115] S.S. Rahman, M. Arshad, A. Qureshi, A. Ullah, Fabrication of a self-healing, 3D printable, and reprocessable biobased elastomer. ACS. Appl. Mater. Interfaces 12, 51927–51939 (2020).

    [116] L.Y. Daikuara, Z.L. Yue, D. Skropeta, G.G. Wallace, In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering. Acta Biomater. 123, 286–297 (2021).

    [117] P. Monks, J.K. Wychowaniec, E. McKiernan, S. Clerkin, J. Crean et al., Spatiotemporally resolved heat dissipation in 3D patterned magnetically responsive hydrogels. Small 17(5), 2004452 (2021).

    [118] O. Messaoudi, C. Henrionnet, K. Bourge, D. Loeuille, P. Gillet et al., Stem cells and extrusion 3D printing for hyaline cartilage engineering. Cells 10(1), 2 (2021).

    [119] V.F. Sager, M.B. Munk, M.S. Hansen, W. Bredie, L. Ahrné, Formulation of heat-induced whey protein gels for extrusion-based 3D printing. Foods 10(1), 8 (2021).

    [120] J.M. Unagolla, A.C. Jayasuriya, Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 18, 100479 (2020).

    [121] J.Z. Zhu, Q. Zhang, T.Q. Yang, Y. Liu, R. Liu, 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun. 11(1), 3462 (2020).

    [122] O. Kérourédan, D. Hakobyan, M. Rémy, S. Ziane, N. Dusserre et al., In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication 11(4), 045002 (2019).

    [123] Y. Lai, Y. Li, H. Cao, J. Long, X. Wang et al., Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 197, 207–219 (2019).

    [124] A.L. Rutz, K.E. Hyland, A.E. Jakus, W.R. Burghardt, R.N. Shah, A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27, 1607–1614 (2015).

    [125] S. Barui, A.K. Panda, S. Naskar, R. Kuppuraj, S. Basu et al., 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: quantitative process strategy for Ti-6Al-4V. Biomaterials 213, 119212 (2019).

    [126] S.C. Cox, J.A. Thornby, G.J. Gibbons, M.A. Williams, K.K. Mallick, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 47, 237–247 (2015).

    [127] P. Feng, P. Wu, C.D. Gao, Y.W. Yang, W. Guo et al., A multimaterial scaffold with tunable properties: toward bone tissue repair. Adv. Sci. 5(6), 1700817 (2018).

    [128] M.T. Matter, J.H. Li, I. Lese, C. Schreiner, L. Bernard et al., Multiscale analysis of metal oxide nanoparticles in tissue: insights into biodistribution and biotransformation. Adv. Sci. 7(15), 2000912 (2020).

    [129] J.V. John, A. McCarthy, H.J. Wang, S.X. Chen, Y. Su et al., Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray. Small 16, e1907393 (2020).

    [130] L.J. Xu, S. Gao, R.B. Zhou, F. Zhou, Y. Qiao et al., Bioactive pore-forming bone adhesives facilitating cell ingrowth for fracture healing. Adv. Mater. 32(10), e1907491 (2020).

    [131] S.Z. Guo, F. Gosselin, N. Guerin, A.M. Lanouette, M.C. Heuzey, Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9, 4118–4122 (2013).

    [132] Z. Li, X. Zhang, Z. Guo, L. Shi, L. Jin et al., Nature-derived bionanomaterials for sustained release of 5-fluorouracil to inhibit subconjunctival fibrosis. Mater. Today Adv. 11, 100150 (2021).

    [133] B. Sacchetti, A. Funari, S. Michienzi, S. Di Cesare, S. Piersanti et al., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    [134] M. Godoy-Gallardo, N. Portolés-Gil, A. López-Periago, C. Domingo, L. Hosta-Rigau, Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 117, 111245 (2020).

    [135] H. Susapto, D. Alhattab, S. Abdelrahman, Z. Khan, S. Alshehri et al., Ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 21(7), 2719–2729 (2021).

    [136] A. Pössl, D. Hartzke, T.M. Schmidts, F.E. Runkel, P. Schlupp, A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Biofabrication 13(3), 035021 (2021).

    [137] L. Ning, C. Gil, B. Hwang, A. Theus, L. Perez et al., Biomechanical factors in three-dimensional tissue bioprinting. Appl. Phys. Rev. 7(4), 041319 (2020).

    [138] E.P. Chen, Z. Toksoy, B.A. Davis, J.P. Geibel, Geibel, 3D Bioprinting of Vascularized Tissues for in vitro and in viv. Front. Bioeng. Biotech. 9, 664188 (2021).

    [139] Z.L. Li, Q.H. Wang, G.D. Liu, A review of 3D printed bone implants. Micromachines 13(4), 528 (2022).

    [140] J.H. Shim, J.Y. Won, J. Park, J.H. Bae, G. Ahn et al., Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration. Int J. Mol. Sci. 18(5), 899 (2017).

    [141] B.S. Kim, S. Das, J. Jang, D.W. Cho, Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem. Rev. 120(19), 10608–10661 (2020).

    [142] W.J. Peng, D. Unutmaz, I.T. Ozbolat, Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 34, 722–732 (2016).

    [143] J.E. Kim, S.H. Kim, Y. Jung, Current status of three-dimensional printing inks for soft tissue regeneration. Tiss. Eng. Regen. Med. 13(6), 636–646 (2016).

    [144] H.P. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3, 1746–1767 (2010).

    [145] G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tiss. Eng. Pt. B-Rev. 14, 149–165 (2008).

    [146] R. Levato, J. Visser, J.A. Planell, E. Engel, J. Malda et al., Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6, 035020 (2014).

    [147] J. Malda, C.G. Frondoza, Microcarriers in the engineering of cartilage and bone. Trends. Biotechnol. 24, 299–304 (2006).

    [148] P.H. Jakob, J. Kehrer, P. Flood, C. Wiegel, U. Haselmann et al., A 3-D cell culture system to study epithelia functions using microcarriers. Cytotechnology 68(5), 1813–1825 (2016).

    [149] A. Akkouch, Y. Yu, I.T. Ozbolat, Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication 7, 031002 (2015).

    [150] D. Del Duca, T. Werbowetski, R.F. Del Maestro, Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J. Neurooncol. 67(3), 295–303 (2004).

    [151] S.K. Nandi, G. Fielding, D. Banerjee, A. Bandyopadhyay, S. Bose, 3D-printed beta-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. J. Mater. Res. 33, 1939–1947 (2018).

    [152] A. Kumar, K.C. Nune, R.D.K. Misra, Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J. Tissue Eng. Regen. Med. 12(4), 1133–1144 (2018).

    [153] Z. Li, X. Zhang, J. Ouyang et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6(11), 4053–4064 (2021).

    [154] G.Q. Pan, S.J. Sun, W. Zhang, R.B. Zhao, W.G. Cui et al., Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials. J. Am. Chem. Soc. 138(45), 15078–15086 (2016).

    [155] L. Yang, I. Ullah, K.D. Yu, W.C. Zhang, J.G. Zhou et al., Bioactive Sr2+/Fe3+ co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication 13, 035007 (2021).

    [156] G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28(2), 113–122 (2012).

    [157] M. Zhu, S.C. Zhao, C. Xin, Y.F. Zhu, C.Q. Zhang, 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis. Biomater. Sci. 3, 1236–1244 (2015).

    [158] A. Klein, A. Baranowski, U. Ritz, H. Gotz, S. Heinemann et al., Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J. Biomed. Mater. Res. B Appl. Biomater. 106, 2565–2575 (2018).

    [159] C.B. Ahn, Y. Kim, S.J. Park, Y. Hwang, J.W. Lee, Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 29, 917–931 (2018).

    [160] J. Wang, M. Yang, Y. Zhu, L. Wang, A.P. Tomsia et al., Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds. Adv. Mater. 26, 4961–4966 (2014).

    [161] M. Zhu, H. He, Q. Meng, Y. Zhu, X. Ye et al., Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration. J. Mater. Chem. B 8, 5849–5861 (2020).

    [162] C. Wang, J. Lai, K. Li, S. Zhu, B. Lu et al., Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact. Mater. 6, 137–145 (2021).

    [163] C.Y. Chen, C.C. Chen, C.Y. Wang, A.K. Lee, C.L. Yeh et al., Assessment of the release of vascular endothelial growth factor from 3D-printed poly-epsilon-caprolactone/hydroxyapatite/calcium sulfate scaffold with enhanced osteogenic capacity. Polymers 12, 1455 (2020).

    [164] H. Cui, W. Zhu, B. Holmes, L.G. Zhang, Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv. Sci. 3, 1600058 (2016).

    [165] J.Y. Park, J.H. Shim, S.A. Choi, J. Jang, M. Kim et al., 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J. Mater. Chem. B 3, 5415–5425 (2015).

    [166] E. Avolio, V. Alvino, M. Ghorbel, P. Campagnolo et al., Perivascular cells and tissue engineering: current applications and untapped potential. Pharmacol. Ther. 171, 83–92 (2017).

    [167] Y. Yu, W. Zhang, Y. Guo, H. Peng, M. Zhu et al., Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes. Biosens. Bioelectron. 167, 112482 (2020).

    [168] F. Xiong, X. Ling, X. Chen, J. Chen, J. Tan et al., Pursuing specific chemotherapy of orthotopic breast cancer with lung metastasis from docking nanoparticles driven by bioinspired exosomes. Nano Lett. 19, 3256–3266 (2019).

    [169] J. Polanco, G. Hand, A. Briner, C. Li, J. Götz, Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–356 (2021).

    [170] A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002).

    [171] K. Zhou, P. Yu, X. Shi, T. Ling, W. Zeng et al., Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13, 9595–9606 (2019).

    [172] G.U. Ruiz-Esparza et al., Nanoengineered shear-thinning hydrogel barrier for preventing postoperative abdominal adhesions. Nano-Micro Lett. 13, 212 (2021).

    [173] J. Ouyang et al., A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact. Mater. 18, 446–458 (2022).

    [174] H. Liu, W. Li, C. Liu, J. Tan, H. Wang et al., Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti6Al4V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication 8, 045012 (2016).

    [175] D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13(1), 1413 (2022).

    [176] J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanoparticles as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021).

    [177] D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022).

    [178] F. Fahimipour, M. Rasoulianboroujeni, E. Dashtimoghadam, K. Khoshroo, M. Tahriri et al., 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent. Mater. 33, 1205–1216 (2017).

    [179] X. Zhang, L. Hai, Y. Gao, G. Yu, Y. Sun, Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm. Sin. B 13, 903 (2023).

    [180] X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    [181] D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13, 99 (2021).

    [182] Y. Zha, Y. Li, T. Lin, J. Chen, S. Zhang et al., Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics 11, 397–409 (2021).

    [183] L. Jin, X. Zhang, Z. Li, G. Chen, J. Li et al., Three-dimensional nanofibrous microenvironment designed for the regulation of mesenchymal stem cells. Appl. Nanosci. 8, 1915–1924 (2018).

    [184] Y. Atlas, C. Gorin, A. Novais, M. Marchand, E. Chatzopoulou et al., Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 268, 120594 (2021).

    [185] Q. Zhu, X. Ling, Y. Yang, J. Zhang, Q. Li et al., Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. 6, 1801899 (2019).

    [186] X. Wang, J. Jin, R. Hou, M. Zhou, X. Mou et al., Differentiation of BMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl. Bio. Mater. 3(1), 735–746 (2019).

    [187] E. Kozhevnikov, S. Qiao, F. Han, W. Yan, Y. Zhao et al., A dual-transduction-integrated biosensing system to examine the 3D cell-culture for bone regeneration. Biosens. Bioelectron. 141, 111481 (2019).

    [188] V. Guduric, C. Metz, R. Siadous, R. Bareille, R. Levato et al., Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. J. Mater. Sci. Mater. Med. 28, 78 (2017).

    [189] M.A. Kuss, S. Wu, Y. Wang, J.B. Untrauer, W. Li et al., Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J. Biomed. Mater. Res. B Appl. Biomater. 106, 1788–1798 (2018).

    [190] C. Li, X. Han, Z. Ma, T. Jie, J. Wang, Engineered customizable microvessels for progressive vascularization in large regenerative implants. Adv. Healthc. Mater. 11, 2101836 (2022).

    [191] M.A. Kuss, R. Harms, S. Wu, Y. Wang, J.B. Untrauer et al., Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells. RSC Adv. 7, 29312–29320 (2017).

    [192] Y.W. Chen, Y.F. Shen, C.C. Ho, J. Yu, Y.A. Wu et al., Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 679–687 (2018).

    [193] H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    [194] P. Rukavina, F. Koch, M. Wehrle, K. Trondle, G.B. Stark et al., In vivo evaluation of bioprinted prevascularized bone tissue. Biotechnol. Bioeng. 117, 3902–3911 (2020).

    [195] H. Lin, Y. Tang, T.P. Lozito, N. Oyster, B. Wang et al., Efficient in vivo bone formation by BMP-2 engineered human mesenchymal stem cells encapsulated in a projection stereolithographically fabricated hydrogel scaffold. Stem Cell. Res. Ther. 10, 254 (2019).

    [196] G.M. Cunniffe, T. Gonzalez-Fernandez, A. Daly, B.N. Sathy, O. Jeon et al., Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue. Eng. Part A 23, 891–900 (2017).

    [197] J. Pizzicannella, F. Diomede, A. Gugliandolo, L. Chiricosta, P. Bramanti et al., 3D printing PLA/Gingival stem cells/EVs upregulate miR-2861 and-210 during osteoangiogenesis commitment. Int. J. Mol. Sci. 20, 3256 (2019).

    [198] J. Zhang, H. Eyisoylu, X. Qin, M. Rubert, R. Müller, 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 121, 637–652 (2021).

    [199] L. Yu, Y. Cai, H. Wang, L. Pan, J. Li et al., Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater. 112, 75–86 (2020).

    [200] Q. Cheng, C. Huang, A. Tomsia, Freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017).

    [201] D. de Melo Pereira, P.J. Habibovic, Biomineralization-inspired material design for bone regeneration. Adv. Healthc. Mater. 7, 1800700 (2018).

    [202] B. Adele, Bone mineral crystal size. Osteoporosis Int. 14, S16–S20 (2003).

    [203] W.J. Landis, R. Jacquet, Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif. Tissue. Int. 93, 329–337 (2013).

    [204] M. Fernandez-Yague, S. Abbah, L. McNamara, D. Zeugolis, A. Pandit et al., Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv. Drug. Deliv. Rev. 94, 1–29 (2015).

    [205] E.A. Zimmermann, R.O. Ritchie, Bone as a structural material. Adv. Healthc. Mater. 4, 1287–1304 (2015).

    [206] M. Murshed, M. McKee, Molecular determinants of extracellular matrix mineralization in bone and blood vessels. Curr. Opin. Nephrol. Hypertens. 19, 359–365 (2010).

    [207] B. Langdahl, S. Ferrari, D. Dempster, Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis. 8, 225–235 (2016).

    [208] Y. Liu, D. Luo, T. Wang, Hierarchical structures of bone and bioinspired bone tissue engineering. Small 12, 4611–4632 (2016).

    [209] O. Tertuliano, J. Greer, The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 15, 1195–1202 (2016).

    [210] L. Wang, L.X. Zhu, Z. Wang, A.J. Lou, Y.X. Yang et al., Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials 175, 44–60 (2018).

    [211] T. Anada, C.C. Pan, A.M. Stahl, S. Mori, J. Fukuda et al., Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int. J. Mol. Sci. 20, 1096 (2019).

    [212] L. Vidal, C. Kampleitner, S. Krissian, M.A. Brennan, O. Hoffmann et al., Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Sci. Rep. 10, 7068 (2020).

    [213] B. Li, C. Ruan, Y. Ma, Z. Huang, Z. Huang et al., Fabrication of vascularized bone flaps with sustained release of recombinant human bone morphogenetic protein-2 and arteriovenous bundle. Tissue. Eng. Part. A 24, 1413–1422 (2018).

    [214] B. Charbonnier, A. Baradaran, D. Sato, O. Alghamdi, Z. Zhang et al., Material-induced venosome-supported bone tubes. Adv. Sci. 6, 1900844 (2019).

    [215] C. Feng, W. Zhang, C. Deng, G. Li, J. Chang et al., 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv. Sci. 4, 1700401 (2017).

    [216] W. Zhang, C. Feng, G. Yang, G. Li, X. Ding et al., 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135, 85–95 (2017).

    [217] M. Zhang, R.C. Lin, X. Wang, J.M. Xue, C.J. Deng et al., 3D printing of Haversian bone–mimicking scaffolds for multicellular delivery in bone regeneration. Sci. Adv. 6, eaaz6725 (2020).

    [218] B. Gao, Q. Yang, X. Zhao, G. Jin, Y. Ma et al., 4D bioprinting for biomedical applications. Trends Biotechnol. 34, 746–756 (2016).

    [219] S. Miao, N. Castro, M. Nowicki, L. Xia, H. Cui et al., 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today 20, 577–591 (2017).

    [220] M. Falahati, P. Ahmadvand, S. Safaee, Y.C. Chang, Z. Lyu et al., Smart polymers and nanocomposites for 3D and 4D printing. Mater. Today 40, 215–245 (2020).

    [221] Z. Wan, P. Zhang, Y. Liu, L. Lv, Y. Zhou et al., Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater. 101, 26–42 (2020).

    [222] A. Melocchi, M. Uboldi, M. Cerea, A. Foppoli, A. Maroni et al., Shape memory materials and 4D printing in pharmaceutics. Adv. Drug. Deliv. Rev. 173, 216–237 (2020).

    [223] C. Zhang, D. Cai, P. Liao, J.W. Su, H. Deng et al., 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 122, 101–110 (2021).

    [224] A.K. Miri, A. Khalilpour, B. Cecen, S. Maharjan, S.R. Shin et al., Multiscale bioprinting of vascularized models. Biomaterials 198, 204–216 (2019).

    [225] C.D. Devillard, C.A. Mandon, S.A. Lambert, L.J. Blum, C.A. Marquette, Bioinspired multi-activities 4D printing objects: a new approach toward complex tissue engineering. Biotechnol. J. 13, 1800098 (2018).

    [226] C. de Marco, S. Pané, B.J. Nelson, 4D printing and robotics. Sci. Robot. 3, eaau0449 (2018).

    [227] A. Kirillova, R. Maxson, G. Stoychev, C.T. Gomillion, L. Ionov, 4D biofabrication using shape-morphing hydrogels. Adv. Mater. 29, 1703443 (2017).

    [228] M. Rafiee, R.D. Farahani, D. Therriault, Multi-material 3D and 4D printing: a survey. Adv. Sci. 7, 1902307 (2020).

    [229] T.A. Einhorn, L.C. Gerstenfeld, Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45–54 (2015).

    [230] T. Wohlers, T. Gornet, History of additive manufacturing, 2014.

    [231] P. Kumar, S. Roy, H. Hegde, S. Bharti, M. Kumar, 4D and 5D Printing, in 3D Printing Technology in Nanomedicine. (Elsevier, 2019), pp.143–163

    [232] A. Haleem, M. Javaid, R. Vaishya, 5D printing and its expected applications in orthopaedics. J. Clin. Orthop. Trauma. 10, 809–810 (2019).

    [233] J.V. Zeijderveld, 5D printing: a new branch of additive manufacturing. Sculpteo report. 2018.

    [234] A. Haleem, M. Javaid, Expected applications of five-dimensional (5D) printing in the medical field. Curr. Med. Res. Pract. 9, 208–209 (2019).

    [235] H. Yang, L. Sun, Y. Pang, D. Hu, H. Xu et al., Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut 70, 567–574 (2021).

    [236] T. Mirabella, J.W. MacArthur, D. Cheng, C.K. Ozaki, Y.J. Woo et al., 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat. Biomed. Eng. 1, 0083 (2017).

    [237] P. Gupta, B.B. Mandal, Tissue-engineered vascular grafts: emerging trends and technologies. Adv. Funct. Mater. 31, 2100027 (2021).

    [238] D. Petta, V. Basoli, D. Pellicciotta, R. Tognato, J. Barcik et al., Sound-induced morphogenesis of multicellular systems for rapid orchestration of vascular networks. Biofabrication 13, 015004 (2020).

    [239] N. Di Marzio, P. Ananthanarayanan, A. Geraldine-Guex, M. Alini, C. Riganti et al., Sound-based assembly of a microcapillary network in a saturn-like tumor model for drug testing. Mater. Today Bio. 16, 100357 (2022).

    [240] G. GroSSbacher, M. Bartolf-Kopp, C. Gergely, P.N. Bernal, S. Florczak, Volumetric printing across melt electrowritten scaffolds fabricates multi-material living constructs with tunable architecture and mechanics. Adv. Mater. (2023).

    [241] D. Ribezzi, M. Gueye, S. Florczak, F. Dusi, D. de Vos et al., Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion-volumetric printing of microgels. Adv. Mater. (2023).

    [242] P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda et al., Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).

    [243] M. Falandt, P.N. Bernal, O. Dudaryeva, S. Florczak, G. Grossbacher et al., Spatial-selective volumetric 4D printing and single-photon grafting of biomolecules within centimeter-scale hydrogels via tomographic manufacturing. Adv. Mater. Technol. (2023).

    [244] M.L. Terpstra, J.Y. Li, A. Mensinga, M. de Ruijter, M.H.P. van Rijen et al., Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication 14, 034104 (2022).

    [245] C. Licht, J.C. Rose, A.O. Anarkoli, D. Blondel, M. Roccio et al., Synthetic 3D peg-anisogel tailored with fibronectin fragments induce aligned nerve extension. Biomacromol 20, 4075–4087 (2019).

    [246] M. Tang, S.K. Tiwari, K. Agrawal, M.T. Tan, J.S. Dang et al., Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity. Small 17, 2006050 (2021).

    [247] S. Lee, E.S. Sani, A.R. Spencer, Y. Guan, A.S. Weiss et al., Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv. Mater. 32, 2003915 (2020).

    [248] H.T. Cui, C.Y. Liu, T. Esworthy, Y.M. Huang, Z.X. Yu et al., 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci. Adv. 6, eabb5067 (2020).

    [249] B.S. Kim, Y.W. Kwon, J.S. Kong, G.T. Park, G. Gao et al., 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 168, 38–53 (2018).

    [250] A.C. Weems, M.C. Arno, W. Yu, R.T.R. Huckstepp, A.P. Dove et al., 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun. 12, 3771 (2021).

    [251] J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.H. Nguyen et al., Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    [252] S. Maharjan, J. Alva, C. Camara, A.G. Rubio, D. Hernandez et al., Symbiotic photosynthetic oxygenation within 3D-bioprinted vascularized tissues. Matter 4, 217–240 (2021).

    [253] G. Haghiashtiani, K. Qiu, J.D.Z. Sanchez, Z.J. Fuenning, P. Nair et al., 3D printed patient-specific aortic root models with internal sensors for minimally invasive applications. Sci. Adv. 6, eabb4641 (2020).

    [254] W.F. Hynes, M. Pepona, C. Robertson, J. Alvarado, K. Dubbin et al., Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model. Sci. Adv. 6, eabb3308 (2020).

    [255] R. Lozano, L. Stevens, B.C. Thompson, K.J. Gilmore, R. Gorkin et al., 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67, 264–273 (2015).

    [256] D. Huh, B. Matthews, A. Mammoto, M. Montoya-Zavala, H. Hsin et al., Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    [257] S. Miao, H. Cui, T. Esworthy, B. Mahadik, S.J. Lee et al., 4D self-morphing culture substrate for modulating cell differentiation. Adv. Sci. 7, 1902403 (2020).

    [258] Z.R. Li, D.D. Chu, G.X. Chen, L.Q. Shi, L. Jin et al., Biocompatible and biodegradable 3D double-network fibrous scaffold for excellent cell growth. J. Biomed. Nanotechnol. 15, 2209–2215 (2019).

    [259] L. Jin, X.Q. Guo, D. Gao, C. Wu, B. Hu et al., NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater. 13, 24 (2021).

    [260] Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31, 2008020 (2021).

    [261] J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. USA 117, 28667–28667 (2020).

    [262] R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio. Mater. 3, 2125–2131 (2020).

    [263] J. Baldwin, F. Wagner, L. Martine, B. Holzapfel, C. Theodoropoulos et al., Periosteum tissue engineering in an orthotopic in vivo platform. Biomaterials 121, 193–204 (2017).

    [264] K. Xi, Y. Gu, J. Tang, H. Chen, Y. Xu et al., Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat. Commun. 11, 4504 (2020).

    [265] Z. Li, D. Chu, Y. Gao, L. Jin, X. Zhang et al., Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Mater. Today Adv. 3, 100014 (2019).

    [266] Z. Li, X. Zhang, J. Ouyang, D. Chu, F. Han et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6, 4053–4064 (2021).

    [267] A. Shokoohmand, J. Ren, J. Baldwin, A. Atack, A. Shafiee et al., Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 220, 119402 (2019).

    [268] S. Lin, G. Yang, F. Jiang, M. Zhou, S. Yin et al., A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv. Sci. 6, 1900209 (2019).

    [269] A. Gonzalez-Pujana, K. Vining, D. Zhang, E. Santos-Vizcaino, M. Igartua et al., Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials 257, 120266 (2020).

    [270] M. Zou, J. Sun, Z. Xiang, Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system. Adv. Healthc. Mater. 10, 2001502 (2021).

    [271] W. Yu, C. Chen, X. Kou, B. Sui, T. Yu et al., Mechanical force-driven TNF alpha endocytosis governs stem cell homeostasis. Bone. Res. 8, 44 (2021).

    [272] J. Liao, C. Ye, J. Guo, C.E. Garciamendez-Mijares, P. Agrawal et al., 3D-printable colloidal photonic crystals. Mater. Today 56, 29–41 (2022).

    [273] G. Thrivikraman, A. Athirasala, R. Gordon, L. Zhang, R. Bergan et al., Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat. Commun. 10, 3520 (2019).

    [274] W. Orapiriyakul, M. Tsimbouri, P. Childs, P. Campsie, J. Wells et al., Nanovibrational stimulation of mesenchymal stem cells induces therapeutic reactive oxygen species and inflammation for three-dimensional bone tissue engineering. ACS Nano 14, 10027–10044 (2020).

    Xiaoyu Han, Qimanguli Saiding, Xiaolu Cai, Yi Xiao, Peng Wang, Zhengwei Cai, Xuan Gong, Weiming Gong, Xingcai Zhang, Wenguo Cui. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds[J]. Nano-Micro Letters, 2023, 15(1): 239
    Download Citation