• Chinese Journal of Lasers
  • Vol. 46, Issue 9, 910001 (2019)
Yang Juxin1, Zhu Yadan2, Wang Qin1, Bu Lingbing1、*, Liu Jiqiao2, and Chen Weibiao2
Author Affiliations
  • 1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol and Cloud Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • 2Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL201946.0910001 Cite this Article Set citation alerts
    Yang Juxin, Zhu Yadan, Wang Qin, Bu Lingbing, Liu Jiqiao, Chen Weibiao. Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2019, 46(9): 910001 Copy Citation Text show less
    References

    [1] Jefferson M. IPCC fifth assessment synthesis report: “Climate change 2014: longer report”: Critical analysis[J]. Technological Forecasting and Social Change, 92, 362-363(2015). http://www.sciencedirect.com/science/article/pii/S0040162514003771

    [2] Yoshida Y, Ota Y, Eguchi N et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques Discussions, 3, 4791-4833(2010).

    [3] Kimura T. Overview of Japanese earth observation programs (conference presentation)[J]. Proceedings of SPIE, 10785, 107850M(2018).

    [4] Crisp D, Pollock H R, Rosenberg R et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 10, 59-81(2017). http://www.ingentaconnect.com/content/doaj/18671381/2017/00000010/00000001/art00004

    [5] Chen W, Zhang Y, Yin Z et al. In the TanSat mission: global CO2 observation and monitoring. [C]∥63rd International Astronautical Congress, October 1-5, 2012, Naples, Italy. [S.l.: s.n.], 1-5(2012).

    [6] Zhang L, Yue T, Wilson J et al. Modelling of XCO2 surfaces based on flight tests of TanSat instruments[J]. Sensors, 16, 1818(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5134477/

    [7] Tang S F, Lu Z J, Wang W G et al. Brief description of space hyperspectral imager[J]. Infrared and Laser Engineering, 48, 0303003(2019).

    [8] Xiong W. Greenhouse gases monitoring instrument(GMI) on GF-5 satellite[J]. Infrared and Laser Engineering, 48, 0303002(2019).

    [9] Kawa S R, Abshire J B, Baker D F et al. -11-28)[2019-03-02]. https:∥ntrs.nasa.gov/search.jsp?R=20190000855(2018).

    [10] Abshire J B, Riris H, Allan G R et al. Pulsed airborne lidar measurements of atmospheric CO2 column absorption[J]. Tellus B: Chemical and Physical Meteorology, 62, 770-783(2010). http://www.tandfonline.com/doi/abs/10.1111/j.1600-0889.2010.00502.x

    [11] Abshire J B, Riris H, Weaver C J et al. Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar[J]. Applied Optics, 52, 4446-4461(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ao-52-19-4446

    [12] Abshire J B, Ramanathan A K, Riris H et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector[J]. Atmospheric Measurement Techniques, 11, 2001-2025(2018).

    [13] Campbell J F, Lin B, Nehrir A R. Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements[J]. Applied Optics, 53, 816-829(2014). http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=197456

    [14] Campbell J F, Lin B, Nehrir A R et al. Binary phase shift keying on orthogonal carriers for multi-channel CO2 absorption measurements in the presence of thin clouds[J]. Optics Express, 22, A1634-A1640(2014). http://europepmc.org/abstract/med/25607320

    [15] Lin B, Nehrir A R, Harrison F W et al. Atmospheric CO2 column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron[J]. Optics Express, 23, A582-A593(2015). http://europepmc.org/abstract/MED/26072883

    [16] Bézy J L, Bensi P, Lin C C et al. ESA future earth observation explorer missions[J]. Proceedings of SPIE, 7081, 70810S(2008). http://ieeexplore.ieee.org/document/4422767/

    [17] Durand Y, Caron J, Hélière A et al. LIDAR technology developments in support of ESA earth observation missions[J]. Proceedings of SPIE, 10566, 105661F(2017). http://adsabs.harvard.edu/abs/2017SPIE10566E..1FD

    [18] Durand Y, Caron J, Bensi P et al. A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar. [C]∥8th International Symposium on Tropospheric Profiling, October, 2009, The Netherlands. [S.l.: s.n.](2009).

    [19] Amediek A, Fix A, Ehret G et al. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmospheric Measurement Techniques, 2, 755-772(2009).

    [20] Liu J Q, Xie Y Y, Li S G et al. Research on spaceborne lidar for global atmospheric greenhouse gases detection[J]. Infrared, 34, 22-26, 34(2013).

    [21] Xie Y Y, Liu J Q, Jiang J X et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration[J]. Infrared and Laser Engineering, 43, 88-93(2014).

    [22] Shi C L. Research on air-borne IPDA lidar carbon dioxide column concentrations measurement[D]. Beijing: University of Chinese Academy of Sciences, 17-26(2015).

    [23] Du J. Study of precise laser frequency control technology applied in spaceborne lidar[D]. Beijing: University of Chinese Academy of Sciences, 106-114(2018).

    [24] Mu Y J, Li R, Wan Y et al. Stray light analysis and suppression for spaceborne lidar system[J]. Chinese Journal of Lasers, 45, 0510005(2018).

    [25] Chen X, Li S G, Zhu X L et al. Spectral purity measurement of single-frequency nanosecond laser pulse based on long path absorption cell[J]. Chinese Journal of Lasers, 46, 0204006(2019).

    [26] Wang J Y. Research on performance simulation and retrieval algorithm of space-borne lidar for measuring CO2 concentration[D]. Qingdao: Ocean University of China, 17-25(2015).

    [27] Ma H. Reliability demonstrating of space-borne greenhouse gases measurement using IPDA lidar[D]. Hefei: University of Science and Technology of China, 39-48(2018).

    [28] Disney M I, Lewis P E, Bouvet M et al. Quantifying surface reflectivity for spaceborne lidar via two independent methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 3262-3271(2009). http://ieeexplore.ieee.org/document/5109737/

    [29] Roy D P, Jin Y, Lewis P E et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 97, 137-162(2005). http://www.sciencedirect.com/science/article/pii/S0034425705001136

    [30] Ångström A. On the atmospheric transmission of sun radiation and on dust in the air[J]. Geografiska Annaler, 11, 156-166(1929). http://www.jstor.org/stable/519399

    [31] Jiang W J, Shi J H, Xie W K[M]. Electrooptical technology, 89-91(2014).

    [32] Grant W B. Effect of differential spectral reflectance on DIAL measurements using topographic targets[J]. Applied Optics, 21, 2390-2394(1982). http://europepmc.org/abstract/MED/20396041

    [33] Levy R C, Remer L A, Kleidman R G et al. Global evaluation of the collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 10, 10399-10420(2010).

    [34] Hill C, Gordon I E, Kochanov R V et al. HITRANonline: an online interface and the flexible representation of spectroscopic data in the HITRAN database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 177, 4-14(2016). http://www.sciencedirect.com/science/article/pii/S0022407315302375

    Yang Juxin, Zhu Yadan, Wang Qin, Bu Lingbing, Liu Jiqiao, Chen Weibiao. Influence of Surface Reflectance and Aerosol Optical Depth on Performance of Spaceborne Integral Path Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2019, 46(9): 910001
    Download Citation