• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 1, 2245004 (2023)
Michelle Simon1、∥, Prabodh Kumar Pandey2、***∥, Leshan Sun1, and Liangzhong Xiang1、2、3、*
Author Affiliations
  • 1Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92617, USA
  • 2Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92697, USA
  • 3Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, USA
  • show less
    DOI: 10.1142/S1793545822450043 Cite this Article
    Michelle Simon, Prabodh Kumar Pandey, Leshan Sun, Liangzhong Xiang. A graphical user interface (GUI) for model-based radiation-induced acoustic computed tomography[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2245004 Copy Citation Text show less
    References

    [1] L. Xiang, B. Han, C. Carpenter, G. Pratx, Y. Kuang, L. Xing. X-ray acoustic computed tomography with pulsed X-ray beam from a medical linear accelerator. Med. Phys., 40, 010701(2013).

    [2] E. Robertson, L. Xiang. Theranostics with radiation-induced ultrasound emission (TRUE). J. Innov. Opt. Health Sci., 11, 1830002(2018).

    [3] P. Samant, L. Trevisi, X. Ji, L. Xiang. X-ray induced acoustic computed tomography. Photoacoustics, 19, 100177(2020).

    [5] L. Xiang, S. Tang, M. Ahmad, L. Xing. High resolution X-ray-induced acoustic tomography. Sci. Rep., 6, 26118(2016).

    [6] S. Tang, D. H. Nguyen, A. Zarafshani, C. Ramseyer, B. Zheng, H. Liu, L. Xiang. X-ray-induced acoustic computed tomography with an ultrasound transducer ring-array. Appl. Phys. Lett., 110, 103504(2017).

    [8] S. Choi, D. Lee, E. Y. Park, J. J. Min, C. Lee, C. Kim. 3D X-ray induced acoustic computed tomography: A phantom study. Proc. SPIE, 11240, 286-289(2020).

    [9] J. Xia, J. Yao, L. V. Wang. Photoacoustic tomography: Principles and advances. Prog. Electromagn. Res., 147, 1-22(2014).

    [10] A. Hauptmann, B. T. Cox. Deep learning in photoacoustic tomography: Current approaches and future directions. J. Biomed. Opt., 25, 112903(2020).

    [11] X. Wang, W. W. Roberts, P. L. Carson, D. P. Wood, J. B. Fowlkes. Photoacoustic tomography: A potential new tool for prostate cancer. Biomed. Opt. Express, 1, 1117-1126(2010).

    [12] X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L. V. Wang. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol., 21, 803-806(2003).

    [13] S. Liu, Z. Zhao, Y. Lu, B. Wang, Z. Nie, Q. H. Liu. Microwave induced thermoacoustic tomography based on probabilistic reconstruction. Appl. Phys. Lett., 112, 263701(2018).

    [14] Y. Cui, C. Yuan, Z. Ji. A review of microwave-induced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications. J. Innov. Opt. Health Sci., 10, 1730007(2017).

    [15] M. Aliroteh, H. Nan, A. Arbabian. Microwave-induced thermoacoustic tomography for subcutaneous vascular imaging. Proc. 2016 IEEE Int. Ultrasonics Symp. (IUS), 1-4(2016).

    [17] K. C. Jones, A. Witztum, C. M. Sehgal, S. Avery. Proton beam characterization by proton-induced acoustic emission: Simulation studies. Phys. Med. Biol., 59, 6549-6563(2014).

    [18] S. Kellnberger et al. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging. Sci. Rep., 6, 29305(2016).

    [19] K. Parodi, W. Assmann. Ionoacoustics: A new direct method for range verification. Mod. Phys. Lett. A, 30, 1540025(2015).

    [20] C. Freijo, J. L. Herraiz, D. Sanchez-Parcerisa, J. M. Udias. Dictionary-based protoacoustic dose mapimaging for proton range verification. Photoacoustics, 21, 100240(2021).

    [21] L. V. Wang, H. I. Wu. Biomedical Optics: Principles and Imaging(2012).

    [22] R. Baskar, K. A. Lee, R. Yeo, K. W. Yeoh. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 9, 193-199(2012).

    [23] B. Schaffner, E. Pedroni. The precision of proton range calculations in proton radiotherapy treatment planning: Experimental verification of the relation between CT-HU and proton stopping power. Phys. Med. Biol., 43, 1579-1592(1998).

    [24] S. Hickling, P. Léger, I. El Naqa. Simulation and experimental detection of radiation-induced acoustic waves from a radiotherapy linear accelerator. Proc. 2014 IEEE Int. Ultrasonics Symp., 29-32(2014).

    [25] S. Hickling, M. Hobson, I. El Naqa. Feasibility of X-ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry. Int. J. Radiat. Oncol. Biol. Phys., 90, S843(2014).

    [26] S. Hickling, P. Léger, I. El Naqa. On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63, 683-690(2016).

    [27] J. Kim et al. X-ray acoustic-based dosimetry using a focused ultrasound transducer and a medical linear accelerator. IEEE Trans. Radiat. Plasma Med. Sci., 1, 534-540(2017).

    [28] F. Forghani et al. Simulation of X-ray-induced acoustic imaging for absolute dosimetry: Accuracy of image reconstruction methods. Med. Phys., 47, 1280-1290(2020).

    [29] S. Hickling et al. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications. Med. Phys., 45, e707-e721(2018).

    [30] E. Lens, A. de Blécourt, D. Schaart, F. Vos, K. van Dongen. OC-0567: Reconstructing the 3-D proton dose distribution from the modelled iono-acoustic wave field. Radiother. Oncol., 133, S297-S298(2019).

    [31] D. Lee, E. Y. Park, S. Choi, H. Kim, J. J. Min, C. Lee, C. Kim. GPU-accelerated 3D volumetric X-ray-induced acoustic computed tomography. Biomed. Opt. Express, 11, 752-761(2020).

    [32] Y. Li, P. Samant, S. Wang, A. Behrooz, D. Li, L. Xiang. 3-D X-ray-induced acoustic computed tomography with a spherical array: A simulation study on bone imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 1613-1619(2020).

    [33] E. Robertson, P. Samant, S. Wang, T. Tran, X. Ji, L. Xiang. X-ray-induced acoustic computed tomography (XACT): Initial experiment on bone sample. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 1073-1080(2020).

    [34] S. Choi, E. Y. Park, S. Park, J. H. Kim, C. Kim. Synchrotron X-ray induced acoustic imaging. Sci. Rep., 11, 4047(2020).

    [35] P. K. Pandey, S. Wang, H. O. Aggrawal, K. Bjegovic, S. Boucher, L. Xiang. Model-based X-ray-induced acoustic computed tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 3560-3569(2021).

    [36] P. K. Pandey, S. Wang, L. Xiang. Model-based reconstruction algorithm for X-ray induced acoustic tomography. Proc. SPIE, 11595, 1004-1010(2021).

    [37] S. Wang, V. Ivanov, P. K. Pandey, L. Xiang. X-ray-induced acoustic computed tomography (XACT) imaging with single-shot nanosecond X-ray. Appl. Phys. Lett., 119, 183702(2021).

    [38] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).

    [39] A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, V. Ntziachristos. Model-based optoacoustic inversions with incomplete projection data. Med. Phys., 38, 1694-1704(2011).

    [40] L. Ding, D. Razansky, X. L. Deán-Ben. Model-based reconstruction of large three-dimensional optoacoustic datasets. IEEE Trans. Med. Imaging, 39, 2931-2940(2020).

    [41] P. K. Pandey, H. O. Aggrawal, S. Wang, K. Kim, A. Liu, L. Xiang. Ring artifacts removal in X-ray-induced acoustic computed tomography. J. Innov. Opt. Health Sci., 15, 2250017(2022).

    [42] A. Rosenthal, T. Jetzfellner, D. Razansky, V. Ntziachristos. Efficient framework for model-based tomographic image reconstruction using wavelet packets. IEEE Trans. Med. Imaging, 31, 1346-1357(2012).

    [43] C. Lutzweiler, X. L. Deán-Ben, D. Razansky. Expediting model-based optoacoustic reconstructions with tomographic symmetries. Med. Phys., 41, 013302(2014).

    [44] L. Ding, X. L. Deán-Ben, C. Lutzweiler, D. Razansky, V. Ntziachristos. Efficient non-negative constrained model-based inversion in optoacoustic tomography. Phys. Med. Biol., 60, 6733(2015).

    [45] Y. Han, S. Tzoumas, A. Nunes, V. Ntziachristos, A. Rosenthal. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging. Med. Phys., 42, 5444-5452(2015).

    [46] L. Ding, X. L. Deán-Ben, C. Lutzweiler, D. Razansky, V. Ntziachristos. Image reconstruction in cross-sectional optoacoustic tomography based on non-negative constrained model-based inversion. Proc. SPIE, 9539, 953919(2015).

    [47] L. Ding, X. L. Deán-Ben, D. Razansky. Real-time model-based inversion in cross-sectional optoacoustic tomography. IEEE Trans. Med. Imaging, 35, 1883-1891(2016).

    [48] C. Lutzweiler, S. Tzoumas, A. Rosenthal, V. Ntziachristos, D. Razansky. High-throughput sparsity-based inversion scheme for optoacoustic tomography. IEEE Trans. Med. Imaging, 35, 674-684(2015).

    [49] X. L. Deán-Ben, E. Merčep, D. Razansky. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues. Appl. Phys. Lett., 110, 203703(2017).

    [50] X. L. Deán-Ben, L. Ding, D. Razansky. Dynamic particle enhancement in limited-view optoacoustic tomography. Opt. Lett., 42, 827-830(2017).

    [51] S. Biton, N. Arbel, G. Drozdov, G. Gilboa, A. Rosenthal. Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization. Photoacoustics, 16, 100142(2019).

    [52] H. Yang et al. Soft ultrasound priors in optoacoustic reconstruction: Improving clinical vascular imaging. Photoacoustics, 19, 100172(2020).

    [53] D. O’Kelly et al. A scalable open-source MATLAB toolbox for reconstruction and analysis of multispectral optoacoustic tomography data. Sci. Rep., 11, 19872(2021).

    [54] J. Jiang, A. Kalyanov, L. Ahnen, S. Lindner, A. Di Costanzo Mata, M. Wolf, S. Sánchez Majos. A new method based on virtual fluence detectors and software toolbox for handheld spectral optoacoustic tomography. Oxygen Transport to Tissue XL, Advances in Experimental Medicine and Biology, 357-361(2018).

    [55] P. Omidi, L. C. M. Yip, E. Rascevska, M. Diop, J. J. L. Carson. PATLAB: A graphical computational software package for photoacoustic computed tomography research. Photoacoustics, 28, 100404(2022).

    [56] U. A. Hofmann, W. Li, X. L. Deán-Ben, P. Subochev, H. Estrada, D. Razansky. Enhancing optoacoustic mesoscopy through calibration-based iterative reconstruction. Photoacoustics, 28, 100405(2022).

    [57] P. K. Pandey, S. Wang, L. Sun, L. Xing, L. Xiang. Model-based Three-dimensional X-ray induced acoustic computerized tomography. IEEE Transactions on Radiation and Plasma Medical Sciences. https://doi.org/10.1109/TRPMS.2023.3238017

    Michelle Simon, Prabodh Kumar Pandey, Leshan Sun, Liangzhong Xiang. A graphical user interface (GUI) for model-based radiation-induced acoustic computed tomography[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2245004
    Download Citation