• Laser & Optoelectronics Progress
  • Vol. 61, Issue 6, 0618016 (2024)
Zhen Liu* and Yang Wu
Author Affiliations
  • Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
  • show less
    DOI: 10.3788/LOP232684 Cite this Article Set citation alerts
    Zhen Liu, Yang Wu. Super-Resolution Fluorescence Microscopy for Cilia Investigation and Ciliopathy Diagnosis (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618016 Copy Citation Text show less
    References

    [1] Huang B, Babcock H, Zhuang X W. Breaking the diffraction barrier: super-resolution imaging of cells[J]. Cell, 143, 1047-1058(2010).

    [2] Doksani Y, Wu J Y, de Lange T et al. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation[J]. Cell, 155, 345-356(2013).

    [3] Jones S A, Shim S H, He J et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 8, 499-508(2011).

    [4] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [5] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [6] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 91, 4258-4272(2006).

    [7] Sharonov A, Hochstrasser R M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 18911-18916(2006).

    [8] Jungmann R, Avendaño M S, Woehrstein J B et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT[J]. Nature Methods, 11, 313-318(2014).

    [9] Kner P, Chhun B B, Griffis E R et al. Super-resolution video microscopy of live cells by structured illumination[J]. Nature Methods, 6, 339-342(2009).

    [10] Shao L, Kner P, Rego E H et al. Super-resolution 3D microscopy of live whole cells using structured illumination[J]. Nature Methods, 8, 1044-1046(2011).

    [11] Gustafsson M G L, Shao L, Carlton P M et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 94, 4957-4970(2008).

    [12] Masch J M, Steffens H, Fischer J et al. Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, E8047-E8056(2018).

    [13] Böhm U, Hell S W, Schmidt R. 4Pi-RESOLFT nanoscopy[J]. Nature Communications, 7, 10504(2016).

    [14] Hofmann M, Eggeling C, Jakobs S et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 17565-17569(2005).

    [15] Dertinger T, Colyer R, Iyer G et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 22287-22292(2009).

    [16] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 347, 543-548(2015).

    [17] Wassie A T, Zhao Y X, Boyden E S. Expansion microscopy: principles and uses in biological research[J]. Nature Methods, 16, 33-41(2019).

    [18] Chang J B, Chen F, Yoon Y G et al. Iterative expansion microscopy[J]. Nature Methods, 14, 593-599(2017).

    [19] Balzarotti F, Eilers Y, Gwosch K C et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 355, 606-612(2017).

    [20] Anvarian Z, Mykytyn K, Mukhopadhyay S et al. Cellular signalling by primary cilia in development, organ function and disease[J]. Nature Reviews: Nephrology, 15, 199-219(2019).

    [21] Wang Y, Bernard A, Comblain F et al. Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight[J]. The Journal of Clinical Investigation, 131, e142064(2021).

    [22] Tu H Q, Li S, Xu Y L et al. Rhythmic cilia changes support SCN neuron coherence in circadian clock[J]. Science, 380, 972-979(2023).

    [23] Sheu S H, Upadhyayula S, Dupuy V et al. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility[J]. Cell, 185, 3390-3407(2022).

    [24] Bustamante-Marin X M, Ostrowski L E. Cilia and mucociliary clearance[J]. Cold Spring Harbor Perspectives in Biology, 9, a028241(2017).

    [25] Spassky N, Meunier A. The development and functions of multiciliated epithelia[J]. Nature Reviews: Molecular Cell Biology, 18, 423-436(2017).

    [26] Wallmeier J, Nielsen K G, Kuehni C E et al. Motile ciliopathies[J]. Nature Reviews Disease Primers, 6, 77(2020).

    [27] Kuek L E, Lee R J. First contact: the role of respiratory cilia in host-pathogen interactions in the airways[J]. American Journal of Physiology: Lung Cellular and Molecular Physiology, 319, L603-L619(2020).

    [28] Hill D B, Swaminathan V, Estes A et al. Force generation and dynamics of individual cilia under external loading[J]. Biophysical Journal, 98, 57-66(2010).

    [29] Ringers C, Olstad E W, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190156(2020).

    [30] Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies[J]. Nature Reviews: Molecular Cell Biology, 8, 880-893(2007).

    [31] Kagan K O, Dufke A, Gembruch U. Renal cystic disease and associated ciliopathies[J]. Current Opinion in Obstetrics & Gynecology, 29, 85-94(2017).

    [32] Wu K Y, Tang F L, Lee D et al. Ependymal Vps35 promotes ependymal cell differentiation and survival, suppresses microglial activation, and prevents neonatal hydrocephalus[J]. The Journal of Neuroscience, 40, 3862-3879(2020).

    [33] Johanson C E, Duncan J A, Klinge P M et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease[J]. Cerebrospinal Fluid Research, 5, 10(2008).

    [34] Reiter J F, Leroux M R. Genes and molecular pathways underpinning ciliopathies[J]. Nature Reviews: Molecular Cell Biology, 18, 533-547(2017).

    [35] Pioch C O, Connell D W, Shoemark A. Primary ciliary dyskinesia and bronchiectasis: new data and future challenges[J]. Archivos De Bronconeumologia, 59, 134-136(2023).

    [36] Corbit K C, Aanstad P, Singla V et al. Vertebrate Smoothened functions at the primary cilium[J]. Nature, 437, 1018-1021(2005).

    [37] Mick D U, Rodrigues R B, Leib R D et al. Proteomics of primary cilia by proximity labeling[J]. Developmental Cell, 35, 497-512(2015).

    [38] Walton T, Gui M, Velkova S et al. Axonemal structures reveal mechanoregulatory and disease mechanisms[J]. Nature, 618, 625-633(2023).

    [39] Chen Z, Shiozaki M, Haas K M et al. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking[J]. Cell, 186, 5041-5053(2023).

    [40] Liu Z, Nguyen Q P H, Guan Q et al. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies[J]. Science Translational Medicine, 12, eaay0071(2020).

    [41] Gonçalves J, Pelletier L. The ciliary transition zone: finding the pieces and assembling the gate[J]. Molecules and Cells, 40, 243-253(2017).

    [42] Garcia-Gonzalo F R, Reiter J F. Open sesame: how transition fibers and the transition zone control ciliary composition[J]. Cold Spring Harbor Perspectives in Biology, 9, a028134(2017).

    [43] Tony Yang T, Su J, Wang W J et al. Superresolution pattern recognition reveals the architectural map of the ciliary transition zone[J]. Scientific Reports, 5, 14096(2015).

    [44] Shi X Y, Garcia G III, van de Weghe J C et al. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome[J]. Nature Cell Biology, 19, 1178-1188(2017).

    [45] Lambacher N J, Bruel A L, van Dam T J P et al. TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome[J]. Nature Cell Biology, 18, 122-131(2016).

    [46] Lancaster M A, Gopal D J, Kim J et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome[J]. Nature Medicine, 17, 726-731(2011).

    [47] Moye A R, Robichaux M A, Wensel T, Ash J D, Pierce E, Anderson R E et al. Expansion microscopy of mouse photoreceptor cilia[M]. Retinal degenerative diseases XIX, 1415, 395-402(2023).

    [48] Louvel V, Haase R, Mercey O et al. iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy[J]. Nature Communications, 14, 7893(2023).

    [49] Bowler M, Kong D, Sun S F et al. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy[J]. Nature Communications, 10, 993(2019).

    [50] Nguyen Q P H, Zhen L, Albulescu A et al. Comparative super-resolution mapping of basal feet reveals a modular but distinct architecture in primary and motile cilia[J]. Developmental Cell, 55, 209-223(2020).

    [51] Liu Z, Nguyen Q P H, Nanjundappa R et al. Super-resolution microscopy and FIB-SEM imaging reveal parental centriole-derived, hybrid cilium in mammalian multiciliated cells[J]. Developmental Cell, 55, 224-236(2020).

    [52] Mönnich M, Borgeskov L, Breslin L et al. CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/BMP signaling at the primary cilium[J]. Cell Reports, 22, 2584-2592(2018).

    [53] Mazo G, Soplop N, Wang W J et al. Spatial control of primary ciliogenesis by subdistal appendages alters sensation-associated properties of cilia[J]. Developmental Cell, 39, 424-437(2016).

    [54] Yoon J, Comerci C J, Weiss L E et al. Revealing nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy[J]. Biophysical Journal, 116, 319-329(2019).

    [55] Chung J J, Shim S H, Everley R A et al. Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility[J]. Cell, 157, 808-822(2014).

    [56] Miller M R, Kenny S J, Mannowetz N et al. Asymmetrically positioned flagellar control units regulate human sperm rotation[J]. Cell Reports, 24, 2606-2613(2018).

    [57] Liu P W, Lou X C, Wingfield J L et al. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia[J]. Journal of Cell Biology, 219, 202001122(2020).

    [58] Liu C, Wang Q C, Gu L S et al. CCDC176 stabilizes microtubule doublets 1 and 9 to ensure proper sperm movement[J]. Current Biology: CB, 33, 3371-3388(2023).

    [59] Shapiro A, Davis S, Polineni D et al. Diagnosis of primary ciliary dyskinesia. an official American thoracic society clinical practice guideline[J]. American Journal of Respiratory and Critical Care Medicine, 197, e24-e39(2018).

    [60] Marshall C R, Scherer S W, Zariwala M A et al. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia[J]. G3, 5, 1775-1781(2015).

    [61] Shoemark A, Frost E, Dixon M et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia[J]. American Journal of Respiratory and Critical Care Medicine, 196, 94-101(2017).

    [62] Mitchell B, Jacobs R, Li J L et al. A positive feedback mechanism governs the polarity and motion of motile cilia[J]. Nature, 447, 97-101(2007).

    [63] Merveille A C, Davis E E, Becker-Heck A et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs[J]. Nature Genetics, 43, 72-78(2011).

    [64] Oda T, Yanagisawa H, Kamiya R et al. A molecular ruler determines the repeat length in eukaryotic cilia and flagella[J]. Science, 346, 857-860(2014).

    [65] Klimas A, Gallagher B R, Wijesekara P et al. Magnify is a universal molecular anchoring strategy for expansion microscopy[J]. Nature Biotechnology, 41, 858-869(2023).

    [66] Everman J L, Rios C, Seibold M A. Primary airway epithelial cell gene editing using CRISPR-Cas9[J]. Methods in Molecular Biology, 1706, 267-292(2018).

    [67] Weber M, von der Emde H, Leutenegger M et al. MINSTED nanoscopy enters the Ångström localization range[J]. Nature Biotechnology, 41, 569-576(2023).

    [68] Breslow D K, Hoogendoorn S, Kopp A R et al. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies[J]. Nature Genetics, 50, 460-471(2018).