• Matter and Radiation at Extremes
  • Vol. 7, Issue 3, 038401 (2022)
Jiani Lin1、2、*, Fangxu Wang3, Qi Rui3, Jianfu Li1, Qinglin Wang4, and Xiaoli Wang1
Author Affiliations
  • 1School of Physics and Electronic Information, Yantai University, Yantai 264005, People’s Republic of China
  • 2Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
  • 3School of Physics and Electronic Engineering, Linyi University, Linyi 276005, People’s Republic of China
  • 4Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, People’s Republic of China
  • show less
    DOI: 10.1063/5.0084802 Cite this Article
    Jiani Lin, Fangxu Wang, Qi Rui, Jianfu Li, Qinglin Wang, Xiaoli Wang. A novel square planar N42− ring with aromaticity in BeN4[J]. Matter and Radiation at Extremes, 2022, 7(3): 038401 Copy Citation Text show less
    References

    [1] R.Academy, A. G.Gavriliuk, M. I.Eremets, R.Boehler, D. A.Dzivenko, I. A.Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 3, 558-563(2004).

    [2] D.Tomasino, C. S.Yoo, M.Kim, J.Smith. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett., 113, 205502(2014).

    [3] P.Loubeyre, D.Laniel, G.Geneste, M.Mezouar, G.Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 122, 066001(2019).

    [4] W. L.Mao, W.Liu, Y.Meng, B.Wan, H.Gou, C.Ji, J. S.Smith, Y.Yao, V. B.Prakapenka, B.Li, A. A.Adeleke, H. K.Mao, G.Shen, L.Yang. Nitrogen in black phosphorus structure. Sci. Adv., 6, eaba9206(2020).

    [5] C.Zhao, H.Yan, M.Zhang, Q.Wei, B.Wei, X.Peng. New stable structures of HeN3 predicted using first-principles calculations. J. Alloys Compd., 800, 505-511(2019).

    [6] S.Wei, D.Duan, Z.Liu, W.Wang, K.Bao, D.Li, H.Yu, T.Cui, F.Tian, B.Liu. Bonding properties of aluminum nitride at high pressure. Inorg. Chem., 56, 7494-7500(2017).

    [7] T.Cui, Z.Liu, D.Li, F.Tian, D.Duan, S.Wei, Y.Liu. Nitrogen-rich GaN5 and GaN6 as high energy density materials with modest synthesis condition. Phys. Lett. A, 383, 125859(2019).

    [8] I. I.Oleynik, B. A.Steele. Novel potassium polynitrides at high pressures. J. Phys. Chem. A, 121, 8955-8961(2017).

    [9] Q.Wei, H.Yan, H.Liu, M.Zhang. A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv., 5, 11825-11830(2015).

    [10] G.Qian, A. R.Oganov, J.Zhang, H.Dong, Q.Zhu, Z.Zhou, Y.Shen. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep., 5, 14204(2015).

    [11] D.Li, Y.Cai, B.Liu, B.Wang, S.Wei, P.Hou, L.Lian. Structural phase transition and bonding properties of high-pressure polymeric CaN3. RSC Adv., 8, 4314-4320(2018).

    [12] I. I.Oleynik, B. A.Steele, A. S.Williams. Novel rubidium poly-nitrogen materials at high pressure. J. Chem. Phys., 147, 234701(2017).

    [13] X.Li, D.Duan, D.Li, Z.Liu, B.Liu, S.Wei, F.Tian, T.Cui. Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials. Phys. Chem. Chem. Phys., 19, 9246-9252(2017).

    [14] J.Lv, Y.Wang, L.Zhang, Y.Ma. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).

    [15] T.Cui, W.Wang, F.Tian, Y.Liu, D.Li, H.Wang, D.Duan, H.Yu. High-pressure bonding mechanism of selenium nitrides. Inorg. Chem., 58, 2397-2402(2019).

    [16] F.Peng, H.Wang, Y.Wang, Y.Zhang, Y.Ma. Stable xenon nitride at high pressures. Phys. Rev. B, 92, 094104(2015).

    [17] B.Huang, G.Frapper. Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds. Chem. Mater., 30, 7623-7636(2018).

    [18] H.Zhu, J.Li, S.Guo, J.Lin, Z.Zhu, Q.Jiang, X.Wang. Stable zigzag and tripodal all-nitrogen anion N44− in BeN2. AIP Adv., 9, 055116(2019).

    [19] Y.Ma, F.Peng, H.Liu, Y.Yao. Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett., 6, 2363-2366(2015).

    [20] P. G.Plieger, L. C.Perera, W.Henderson, O.Raymond, P. J.Brothers. Advances in beryllium coordination chemistry. Coord. Chem. Rev., 352, 264-290(2017).

    [21] S. B.Schneider, G. M.Friederichs, M.Mangstl, W.Schnick, R.Frankovsky, J.Schmedt auf der Günne. Electronic and ionic conductivity in alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) and in Li2N2. Chem. Mater., 25, 4149-4155(2013).

    [22] S. B.Schneider, W.Schnick, R.Frankovsky. Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure. Inorg. Chem., 51, 2366-2373(2012).

    [23] S.Yu, B.Huang, Q.Zeng, G.Frapper, L.Zhang, A. R.Oganov. Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen MgxNy phases under high pressure. J. Phys. Chem. C, 121, 11037-11046(2017).

    [24] F.Peng, Y.Yao, H.Liu, Y.Han. Exotic stable cesium polynitrides at high pressure. Sci. Rep., 5, 16902(2015).

    [25] X.Wang, N.Xu, Z.Hu, L.Chen, J.Li, H.Zhu. Layered polymeric nitrogen in RbN3 at high pressures. Sci. Rep., 5, 16677(2015).

    [26] X.Wang, H.Lin, H.Zhu, L.Chen, J.Li. Polymerization of nitrogen in cesium azide under modest pressure. J. Chem. Phys., 141, 044717(2014).

    [27] L.Chen, H.Liu, J.Botana, T.Cui, H.Zhu, X.Wang, J.Li, M.Zhang, M.Miao. Polymerization of nitrogen in lithium azide. J. Chem. Phys., 139, 164710(2013).

    [28] Y.Li, J.Hao, H.Liu, Y.Ma, S. A. T.Redfern, X.Feng, W.Lei, D.Liu. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun., 9, 722(2018).

    [29] S.Zhang, L.Liu, G.Yang, Z.Zhao. Pressure-induced stable BeN4 as a high-energy density material. J. Power Sources, 365, 155-161(2017).

    [30] F.Peng, A.Majumdar, T.Gao, S.Zhu, H.Liu, Y.Yao. Stable calcium nitrides at ambient and high pressures. Inorg. Chem., 55, 7550-7555(2016).

    [31] Q.Wang, J.Li, J.Lin, H.Zhu, D.Peng, X.Wang. Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions. Phys. Chem. Chem. Phys., 23, 6863-6870(2021).

    [32] M. A.Aslam, Z. J.Ding. Prediction of thermodynamically stable compounds of the Sc–N system under high pressure. ACS Omega, 3, 11477-11485(2018).

    [33] L.-P.Ding, P.Shao, C.Lu, F.-H.Zhang, X.-F.Huang. Prediction of molybdenum nitride from first-principle calculations: Crystal structures, electronic properties, and hardness. J. Phys. Chem. C, 122, 21039-21046(2018).

    [34] B.-B.Zheng, Y.-R.Zhao, H.-Y.Yan, T.-T.Bai, G.-T.Zhang, Y.-Q.Yuan. First-principles investigations of the structure and physical properties for new TcN crystal structure. Mol. Phys., 114, 1952-1959(2016).

    [35] M.Zhang, H.Yan, C.Zhao, B.Wei, Q.Wei. High-pressure phases and pressure-induced phase transition of MoN6 and ReN6. Phys. Lett. A, 383, 2429-2435(2019).

    [36] X.Cai, Y.Chen, H.Wang, H.Wang, H.Wang. Novel triadius-like N4 specie of iron nitride compounds under high pressure. Sci. Rep., 8, 10670(2018).

    [37] L.Wu, F.Gao, Y.Yao, P.Chen, B.Wan, R.Tian, T.Shen, H.Gou, N.Gong, H.Liu. Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species. Chem. Mater., 30, 8476-8485(2018).

    [38] K.Suzuki, M.Hasegawa, K.Tatsumi, T.Kikegawa, K.Niwa, S.Muto, K.Soda. Discovery of the last remaining binary platinum-group pernitride RuN2. Chem. - Eur. J., 20, 13885-13888(2014).

    [39] C.Sanloup, E.Gregoryanz, H. K.Mao, R. J.Hemley, A. F.Young, S.Scandolo. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett., 96, 155501(2006).

    [40] K.Niwa, K.Suzuki, I.Troyan, R.Riedel, D.Dzivenko, M.Hasegawa, M.Eremets. High pressure synthesis of marcasite-type rhodium pernitride. Inorg. Chem., 53, 697-699(2014).

    [41] A. F.Goncharov, B.Sadigh, J. C.Crowhurst, A. J.Nelson, P. G.Morrall, J. L.Ferreira, C. L.Evans. Synthesis and characterization of the nitrides of platinum and iridium. Science, 311, 1275-1278(2006).

    [42] H.Zhu, M.Miao, J.Li, L.Sun, X.Wang. Simple route to metal cyclo-N5 salt: High-pressure synthesis of CuN5. J. Phys. Chem. C, 122, 22339-22344(2018).

    [43] U.Wedig, R.Dinnebier, M.Jansen, C. L.Schmidt. Crystal structure and chemical bonding of the high-temperature phase of AgN3. Inorg. Chem., 46, 907-916(2007).

    [44] P. R.Briddon, L.?iller, M. G.Wardle, M.Montalti, M. R. C.Hunt, M. J.Shaw, K.Svensson, S.Krishnamurthy. Nitrogen ion irradiation of Au(110): Photoemission spectroscopy and possible crystal structures of gold nitride. Phys. Rev. B, 70, 045414(2004).

    [45] G.Jiang, X. W.Sun, J. H.Tian, T.Wang, T.Song. Theoretical investigation on the high-pressure physical properties of ZnN in cubic zinc blende, rock salt, and cesium chloride structures. J. Phys. Chem. Solids, 110, 70-75(2017).

    [46] J.Li, Q.Wang, J.Lin, H.Wu, X.Wang, S.Guo, H.Zhu. High-pressure stable phases in mercury azide. Comput. Mater. Sci., 169, 109147(2019).

    [47] J. C.Crowhurst, B. A.Steele, I. I.Oleynik, E.Stavrou, V. B.Prakapenka, J. M.Zaug. High-pressure synthesis of a pentazolate salt. Chem. Mater., 29, 735-741(2017).

    [48] G.Gaiffe, D.Laniel, G.Garbarino, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).

    [49] M.Mezouar, I.Kupenko, N.Dubrovinskaia, V.Prakapenka, L.Dubrovinsky, C.McCammon, E.Koemets, E.Bykova, G.Aprilis, I.Chuvashova, I. A.Abrikosov, M.Bykov, F.Tasnádi, K.Glazyrin, A. V.Ponomareva, H. P.Liermann. Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun., 9, 2756(2018).

    [50] M.Pe?a-Alvarez, A.Hermann, P.Dalladay-Simpson, J.Binns, R. T.Howie, E.Gregoryanz, M.-E.Donnelly, M.Wang. Direct reaction between copper and nitrogen at high pressures and temperatures. J. Phys. Chem. Lett., 10, 1109-1114(2019).

    [51] L.Dubrovinsky, M.Hanfland, M. F.Mahmood, I. A.Abrikosov, F.Tasnádi, K.Glazyrin, A. F.Goncharov, A. V.Ponomareva, J. S.Smith, T.Fedotenko, I.Hotz, A. N.Rudenko, D.Laniel, T.Bin Masood, M.Bykov, S.Chariton, M. I.Katsnelson, N.Dubrovinskaia, V. B.Prakapenka, A. I.Abrikosov. High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph. Phys. Rev. Lett., 126, 175501(2021).

    [52] F.Tian, T.Cui, S.Wei, W.Wang, K.Bao, D.Li, B.Liu, D.Duan, Z.Liu. A novel polymerization of nitrogen in beryllium tetranitride at high pressure. J. Phys. Chem. C, 121, 9766-9772(2017).

    [53] L.Zhu, Y.Ma, Y.Wang, J.Lv. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 183, 2063-2070(2012).

    [54] J.Lv, L.Zhu, Y.Ma, Y.Wang. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 82, 094116(2010).

    [55] K.Burke, J. P.Perdew, M.Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [56] J. D.Pack, H. J.Monkhorst. ‘Special points for Brillouin-zone integrations’—A reply. Phys. Rev. B, 16, 1748-1749(1977).

    [57] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).

    [58] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).

    [59] Z. Q.Li, K.Parlinski, Y.Kawazoe. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett., 78, 4063-4066(1997).

    [60] F.Oba, A.Togo, I.Tanaka. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 78, 134106(2008).

    [61] S.Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).

    [62] W. G.Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697(1985).

    [63] R.Hill. Related content the elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A, 65, 349-354(1952).

    [64] Y.Chang, Q.Zhang. Prediction of detonation pressure and velocity of explosives with micrometer aluminum powders. Cent. Eur. J. Energ. Mater., 9, 77-86(2012).

    [65] J. E.Ablard, M. J.Kamlet. Chemistry of detonations. II. Buffered equilibria. J. Chem. Phys., 48, 36-42(1968).

    [66] R.Dronskowski, A. L.Tchougréeff, V. L.Deringer, S.Maintz. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 37, 1030-1035(2016).

    [67] W.Tang, G.Henkelman, E.Sanville. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter, 21, 084204(2009).

    [68] A. I.Boldyrev, T. R.Galeev, J. R.Schmidt, B. D.Dunnington. Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems. Phys. Chem. Chem. Phys., 15, 5022(2013).

    [69] G. A.Olah, G.Rasul, G. K.Surya Prakash. N62+ and N42+ dications and their N12 and N10 azido derivatives: DFT/GIAO-MP2 theoretical studies. J. Am. Chem. Soc., 123, 3308-3310(2001).

    [70] Q. S.Li, L. P.Cheng. Aromaticity of square planar N42− in the M2N4 (M = Li, Na, K, Rb, or Cs) species. J. Phys. Chem. A, 107, 2882-2889(2003).

    [71] Q. S.Li, L. P.Cheng. N4 ring as a square planar ligand in novel MN4 species. J. Phys. Chem. A, 109, 3182-3186(2005).

    [72] G.van Zandwijk, H. M.Buck, R. A. J.Janssen. 6π aromaticity in four-membered rings. J. Am. Chem. Soc., 112, 4155-4164(1990).

    [73] Q. S.Li, L. P.Cheng. Theoretical study of nitrogen-rich BeN4 compounds. J. Phys. Chem. A, 108, 665-670(2004).

    [74] X. F.Hao, E. J.Zhao, Z. J.Wu, H. P.Xiang, J.Meng, X. J.Liu. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 76, 054115(2007).

    [75] M.Moreno Armenta, M.Avalos Borja, A.Reyes-Serrato. Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study. Phys. Rev. B, 62, 4890-4898(2000).

    [76] R. J.Needs, C. J.Pickard. High-pressure phases of nitrogen. Phys. Rev. Lett., 102, 125702(2009).

    [77] M. J.Kamlet, C.Dickinson. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J. Chem. Phys., 48, 43(1968).

    [78] X.Li, J.Zhang, H.Niu, A. R.Oganov. Pressure-stabilized hafnium nitrides and their properties. Phys. Rev. B, 95, 020103(R)(2017).

    [79] J. P.Agrawal. High Energy Materials: Propellants, Explosives and Pyritechnics(2010).

    [80] G. T.Furukawa, M. L.Reilly. Heat capacity and thermodynamic properties of α-beryllium nitride, Be3N2, from 20 to 315 K. J. Res. Natl. Bur. Stand., Sect. A, 74A, 617-629(1970).

    [81] T. B.Douglas, W. H.Payne. Measured enthalpy and derived thermodynamic properties of alpha beryllium nitride, Be3N2, from 273 to 1200 K. J. Res. Natl. Bur. Stand., Sect. A, 73A, 471-477(1969).

    [82] G. A.Jeffrey, D.Hall, G. E.Gurr. Zur kenntnis des systems Be3N-Si3N4. V. A refinement of the crystal structure of β-beryllium nitride. Z. Anorg. Allg. Chem., 369, 108-112(1969).

    [83] S.Chariton, T.Fedotenko, N.Dubrovinskaia, A.Pakhomova, L.Dubrovinsky, D.Laniel, B.Winkler, V.Milman, V.Prakapenka. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).

    [84] W.Yang, H.-K.Mao, N. J.English, J. S.Tse, B.Wang, C.Lin, X.Liu, M.Li, J. S.Smith, X.Yong. Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII. Proc. Natl. Acad. Sci. U. S. A., 117, 15437-15442(2020).

    [85] J. S.Tse, X.Liu, W.Yang, H.Dong, J. S.Smith, D.Yang, B.Wang, C.Lin, S.Li, X.Li. Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression. Phys. Rev. Lett., 125, 155702(2020).

    Jiani Lin, Fangxu Wang, Qi Rui, Jianfu Li, Qinglin Wang, Xiaoli Wang. A novel square planar N42− ring with aromaticity in BeN4[J]. Matter and Radiation at Extremes, 2022, 7(3): 038401
    Download Citation