• Journal of Semiconductors
  • Vol. 46, Issue 4, 042702 (2025)
Mikhail K. Sotnichuk1, Anton V. Ikonnikov1,*, Dmitry R. Khokhlov1, Nikolay N. Mikhailov2..., Sergey A. Dvoretsky2 and Vladimir I. Gavrilenko3|Show fewer author(s)
Author Affiliations
  • 1Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
  • 2Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
  • 3Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
  • show less
    DOI: 10.1088/1674-4926/24090023 Cite this Article
    Mikhail K. Sotnichuk, Anton V. Ikonnikov, Dmitry R. Khokhlov, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Vladimir I. Gavrilenko. Features of persistent photoconductivity in CdHgTe-based single quantum well heterostructures[J]. Journal of Semiconductors, 2025, 46(4): 042702 Copy Citation Text show less
    References

    [1] M König, S Wiedmann, C Brüne et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 318, 766(2007).

    [2] M Z Hasan, C L Kane. Colloquium: Topological insulators. Rev Mod Phys, 82, 3045(2010).

    [3] L Fu. Topological crystalline insulators. Phys Rev Lett, 106, 106802(2011).

    [4] Y Tanaka, Z Ren, T Sato et al. Experimental realization of a topological crystalline insulator in SnTe. Nat Phys, 8, 800(2012).

    [5] Y Tokura, K Yasuda, A Tsukazaki. Magnetic topological insulators. Nat Rev Phys, 1, 126(2019).

    [6] F Schindler, A M Cook, M G Vergniory et al. Higher-order topological insulators. Sci Adv, 4, eaat0346(2018).

    [7] Y L Chen, J G Analytis, J H Chu et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 325, 178(2009).

    [8] K Kuroda, H Miyahara, M Ye et al. Experimental verification of PbBi2Te4 as a 3D topological insulator. Phys Rev Lett, 108, 206803(2012).

    [9] C C Liu, W X Feng, Y G Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 107, 076802(2011).

    [10] J J Zhou, W X Feng, C C Liu et al. Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett, 14, 4767(2014).

    [11] Y D Ma, L Z Kou, Y Dai et al. Proposed two-dimensional topological insulator in SiTe. Phys Rev B, 94, 201104(R)(2016).

    [12] I Knez, R R Du, G Sullivan. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys Rev Lett, 107, 136603(2011).

    [13] P Bampoulis, C Castenmiller, D J Klaassen et al. Quantum spin hall states and topological phase transition in germanene. Phys Rev Lett, 130, 196401(2023).

    [14] S F Wu, V Fatemi, Q D Gibson et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science, 359, 76(2018).

    [15] Z Y Fei, T Palomaki, S F Wu et al. Edge conduction in monolayer WTe2. Nat Phys, 13, 677(2017).

    [16] C Liu, D Culcer, Z N Wang et al. Helical edge transport in millimeter-scale thin films of Na3Bi. Nano Lett, 20, 6306(2020).

    [17] L Lunczer, P Leubner, M Endres et al. Approaching quantization in macroscopic quantum spin hall devices through gate training. Phys Rev Lett, 123, 047701(2019).

    [18] B Weber, M S Fuhrer, X L Sheng et al. 2024 roadmap on 2D topological insulators. J Phys Mater, 7, 022501(2024).

    [19] S S Krishtopenko, I Yahniuk, D B But et al. Pressure- and temperature-driven phase transitions in HgTe quantum wells. Phys Rev B, 94, 245402(2016).

    [20] Z D Kvon, E B Olshanetsky, E G Novik et al. Two-dimensional electron-hole system in HgTe-based quantum wells with surface orientation (112). Phys Rev B, 83, 193304(2011).

    [21] B A Bernevig, S C Zhang. Quantum spin Hall effect. Phys Rev Lett, 96, 106802(2006).

    [22] A Kastalsky, J C M Hwang. Study of persistent photoconductivity effect in n-type selectively doped AlGaAs/GaAs heterojunction. Solid State Commun, 51, 317(1984).

    [23] D A Anderson, S J Bass, M J Kane et al. Transport and persistent photoconductivity in InGaAs/InP single quantum wells. Appl Phys Lett, 49, 1360(1986).

    [24] G Tuttle, H Kroemer, J H English. Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells. J Appl Phys, 65, 5239(1989).

    [25] C Gauer, J Scriba, A Wixforth et al. Photoconductivity in AlSb/InAs quantum wells. Semicond Sci Technol, 8, S137(1993).

    [26] I Lo, W C Mitchel, M O Manasreh et al. Negative persistent photoconductivity in the Al0.6Ga0.4Sb/InAs quantum wells. Appl Phys Lett, 60, 751(1992).

    [27] A S Chaves, H Chacham. Negative photoconductivity in semiconductor heterostructures. Appl Phys Lett, 66, 727(1995).

    [28] L C Tsai, C F Huang, J C Fan et al. Persistent photoconductivity in SiGe/Si quantum wells. J Appl Phys, 84, 877(1998).

    [29] W C Wang, L C Tsai, J C Fan et al. Positive and negative persistent photoconductivities in semimetallic AlxGa1–xSb/InAs quantum wells. J Appl Phys, 86, 3152(1999).

    [30] V Y Aleshkin, V I Gavrilenko, D M Gaponova et al. Spectra of persistent photoconductivity in InAs/AlSb quantum-well heterostructures. Semicond, 39, 22(2005).

    [31] V I Gavrilenko, A V Ikonnikov, S S Krishtopenko et al. Persistent photoconductivity in InAs/AlSb heterostructures with double quantum wells. Semicond, 44, 616(2010).

    [32] K E Spirin, D M Gaponova, K V Marem’yanin et al. Bipolar persistent photoconductivity in HgTe/CdHgTe (013) double quantum-well heterostructures. Semicond, 52, 1586(2018).

    [33] K E Spirin, D M Gaponova, V I Gavrilenko et al. Residual-photoconductivity spectra in HgTe/CdHgTe quantum-well heterostructures. Semicond, 53, 1363(2019).

    [34] I Nikolaev, A Kazakov, K Drozdov et al. Bipolar persistent photoconductivity in HgTe/CdHgTe double quantum well heterostructures and its application for reversible change in the conductivity type. J Appl Phys, 132, 234301(2022).

    [35] M K Sotnichuk, A S Kazakov, I D Nikolaev et al. Cap layer effect on key features of persistent photoconductivity spectra in HgTe/CdHgTe double quantum well heterostructures. Photonics, 10, 877(2023).

    [36] I D Nikolaev, T A Uaman Svetikova, V V Rumyantsev et al. Probing states of a double acceptor in CdHgTe heterostructures via optical gating. JETP Lett, 111, 575(2020).

    [37] A Shuvaev, V Dziom, J Gospodarič et al. Band structure near the Dirac point in HgTe quantum wells with critical thickness. Nanomaterials, 12, 2492(2022).

    [38] L S Bovkun, S S Krishtopenko, V Y Aleshkin et al. Simultaneous observation of the cyclotron resonances of electrons and holes in a HgTe/CdHgTe double quantum well under "optical gate" effect. JETP Lett, 118, 867(2023).

    [39] M Meyer, T Fähndrich, S Schmid et al. Coexistence of topological and normal insulating phases in electro-optically tuned InAs/GaSb bilayer quantum wells. Phys Rev B, 109, L121303(2024).

    [40] N N Mikhailov, R N Smirnov, S A Dvoretsky et al. Growth of Hg1–xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control. Int J Nanotechnol, 3, 120(2006).

    [41] S Dvoretsky, N Mikhailov, Y Sidorov et al. Growth of HgTe quantum wells for IR to THz detectors. J Electron Mater, 39, 918(2010).

    [42] P A Bakhtin, S A Dvoretskii, V S Varavin et al. Effect of low-temperature annealing on electrical properties of n-HgCdTe. Semiconductors, 38, 1172(2004).

    [43] A V Ikonnikov, M S Zholudev, K V Marem’yanin et al. Cyclotron resonance in HgTe/CdTe(013) narrowband heterostructures in quantized magnetic fields. JETP Lett, 95, 406(2012).

    [44] L S Bovkun, A V Ikonnikov, S S Krishtopenko et al. Effects of the electron—electron interaction in the magneto-absorption spectra of HgTe/CdHgTe quantum wells with an inverted band structure. JETP Lett, 112, 508(2020).

    [45] L S Bovkun, A V Ikonnikov, V Y Aleshkin et al. Magnetospectroscopy of double HgTe/CdHgTe QWs with inverted band structure in high magnetic fields up to 30 T. Opto Electron Rev, 27, 213(2019).

    [46] A V Ikonnikov, L S Bovkun, V V Rumyantsev et al. On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation. Semicond, 51, 1531(2017).

    [47] J P Laurenti, J Camassel, A Bouhemadou et al. Temperature dependence of the fundamental absorption edge of mercury cadmium telluride. J Appl Phys, 67, 6454(1990).

    [48] E G Novik, A Pfeuffer-Jeschke, T Jungwirth et al. Band structure of semimagnetic Hg1–yMnyTe quantum wells. Phys Rev B, 72, 035321(2005).

    [49] M V Yakunin, S S Krishtopenko, W Desrat et al. Unconventional reentrant quantum hall effect in a HgTe/CdHgTe double quantum well. Phys Rev B, 102, 165305(2020).

    [50] A V Ikonnikov, S S Krishtopenko, L S Bovkun et al. Origin of structure inversion asymmetry in double HgTe quantum wells. JETP Lett, 116, 547(2022).

    [51] G M Khattak, C G Scott. Characteristics of deep levels in n-type CdTe. J Phys: Condens Matter, 3, 8619(1991).

    [52] A Castaldini, A Cavallini, B Fraboni et al. Deep energy levels in CdTe and CdZnTe. J Appl Phys, 83, 2121(1998).

    [53] M Cardona, D L Greenaway. Fundamental reflectivity and band structure of ZnTe, CdTe, and HgTe. Phys Rev, 131, 98(1963).

    [54] D J Chadi, J P Walter, M L Cohen et al. Reflectivities and electronic band structures of CdTe and HgTe. Phys Rev B, 5, 3058(1972).

    [55] R W Shaw. Intrinsic oscillatory photoconductivity and the band structure of GaAs. Phys Rev B, 3, 3283(1971).

    [56] R J Nicholas, A C Carter, S Fung et al. A study of the energy loss mechanisms for hot electrons in CdTe and CdS from oscillatory photoconductivity and the magnetophonon effect. J Phys C Solid State Phys, 13, 5215(1980).

    [57] E Kartheuser, J Schmit, R Evrard. Theory of extrinsic oscillatory photoconductivity in polar semiconductors. J Appl Phys, 63, 784(1988).

    [58] D N Talwar, M Vandevyver. Vibrational properties of HgCdTe system. J Appl Phys, 56, 1601(1984).

    [59] M H Weiler. Chapter 3 Magnetooptical properties of Hg1-xCdx Te alloys. Semiconductors and semimetals. Amsterdam: Elsevier, 119(1981).

    [60] R K Bhan, V Dhar. Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors. Semicond Sci Technol, 19, 413(2004).

    [61] R Z Xie, Q Li, P Wang et al. Spatial description theory of narrow-band single-carrier avalanche photodetectors. Opt Express, 29, 16432(2021).

    [62] A V Ikonnikov, M S Zholudev, V I Gavrilenko et al. Magnetoabsorption in narrow-gap HgCdTe epitaxial layers in the terahertz range. Semicond, 47, 1545(2013).

    Mikhail K. Sotnichuk, Anton V. Ikonnikov, Dmitry R. Khokhlov, Nikolay N. Mikhailov, Sergey A. Dvoretsky, Vladimir I. Gavrilenko. Features of persistent photoconductivity in CdHgTe-based single quantum well heterostructures[J]. Journal of Semiconductors, 2025, 46(4): 042702
    Download Citation