• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011030 (2021)
Chen Meng, Xiaoqian Wang*, Chao Gao, Lidan Gou, Peng Chen, and Zhihai Yao
Author Affiliations
  • College of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP202158.1011030 Cite this Article Set citation alerts
    Chen Meng, Xiaoqian Wang, Chao Gao, Lidan Gou, Peng Chen, Zhihai Yao. Using Ghost Imaging Technique to Retrieve Information of Occluded Object[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011030 Copy Citation Text show less
    References

    [1] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995). http://www.ncbi.nlm.nih.gov/pubmed/10058246

    [2] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [3] Sergienko A V, Shih Y H, Rubin M H. Experimental evaluation of a two-photon wave packet in type-II parametric downconversion[J]. Journal of the Optical Society of America B, 12, 859-862(1995). http://www.opticsinfobase.org/abstract.cfm?uri=josab-12-5-859

    [4] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [5] Scarcelli G, Valencia A, Shih Y. Two-photon interference with thermal light[C]. //2005 Quantum Electronics and Laser Science Conference, May 22-27, 2005, Baltimore, MD, USA., 292-294(2005).

    [6] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [7] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009). http://www.oalib.com/paper/3236364

    [8] Gao C, Wang X Q, Wang Z F et al. Optimization of computational ghost imaging[J]. Physical Review A, 96, 023838(2017).

    [9] Li L Z, Yao X R, Liu X F et al. Super-resolution ghost imaging via compressed sensing[J]. Acta Physica Sinica, 63, 224201(2014).

    [10] Zhou Y, Zhang H W, Zhong F et al. Iterative denoising of ghost imaging based on adaptive threshold method[J]. Acta Physica Sinica, 67, 244201(2018).

    [11] Zhang M H, Wei Q, Shen X et al. Statistical optics based numerical modeling of ghost imaging and its experimental approval[J]. Acta Optica Sinica, 27, 1858-1866(2007).

    [12] Gong W L, Han S S. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints[J]. Physics Letters A, 376, 1519-1522(2012).

    [13] Scarcelli G, Berardi V, Shih Y. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, 061106(2006). http://scitation.aip.org/content/aip/journal/apl/88/6/10.1063/1.2172410

    [14] Chen M Y, Wu H, Wang R Z et al. Computational ghost imaging with uncertain imaging distance[J]. Optics Communications, 445, 106-110(2019). http://www.sciencedirect.com/science/article/pii/S0030401819303141

    [15] Zhang Y, Li W D, Wu H Z et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 441, 45-48(2019). http://www.sciencedirect.com/science/article/pii/S0030401819301440

    [16] Wang F, Wang H, Bian Y M et al. Applications of deep learning in computational imaging[J]. Acta Optica Sinica, 40, 0111002(2020).

    [17] Yan G Q, Yang F B, Wang X X et al. Computational ghost imaging based on orthogonal sinusoidal speckle[J]. Laser & Optoelectronics Progress, 57, 041019(2020).

    [18] Wang C L, Gong W L, Shao X H et al. Influence of receiving numerical aperture and rough target size on ghost imaging via sparsity constraint[J]. Chinese Journal of Lasers, 46, 0810002(2019).

    [19] Yang S C, Yu H, Lu R H et al. Simulation of Fourier-transform ghost imaging using polychromatic X-ray sources[J]. Acta Optica Sinica, 39, 0511003(2019).

    [20] Gao C, Wang X Q, Gou L D et al. Ghost imaging for an occluded object[J]. Laser Physics Letters, 16, 065202(2019). http://arxiv.org/abs/1804.03800

    [21] Lyu G J, Mao X, Hu Y J et al. One method to detect tracking occlusions based on evaluation forward and backward errors[J]. Infrared Technology, 38, 337-341, 347(2016).

    [22] Xiao J J, Stolkin R, Gao Y Q et al. Robust fusion of color and depth data for RGB-D target tracking using adaptive range-invariant depth models and spatio-temporal consistency constraints[J]. IEEE Transactions on Cybernetics, 48, 2485-2499(2018). http://ieeexplore.ieee.org/document/8026575/

    [23] Delail B A, Bhaskar H, Zemerly M J et al. Robust likelihood model for illumination invariance in particle filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 28, 2836-2848(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112851099.html

    Chen Meng, Xiaoqian Wang, Chao Gao, Lidan Gou, Peng Chen, Zhihai Yao. Using Ghost Imaging Technique to Retrieve Information of Occluded Object[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011030
    Download Citation