• Laser & Optoelectronics Progress
  • Vol. 58, Issue 14, 1400003 (2021)
Yicheng Wang1, Wenjie Li1, Yanping Huang2, Jinping Feng3, Guoqin Ma1, Qun Shi1, Lin An2, Jingjiang Xu2, Jia Qin2, Haishu Tan2, and Gongpu Lan2、*
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong 528000, China
  • 2School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
  • 3Institute of Engineering & Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China;
  • show less
    DOI: 10.3788/LOP202158.1400003 Cite this Article Set citation alerts
    Yicheng Wang, Wenjie Li, Yanping Huang, Jinping Feng, Guoqin Ma, Qun Shi, Lin An, Jingjiang Xu, Jia Qin, Haishu Tan, Gongpu Lan. Advances in Optical Coherence Elastography[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1400003 Copy Citation Text show less
    References

    [1] Greenleaf J F, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues[J]. Annual Review of Biomedical Engineering, 5, 57-78(2003).

    [2] Sarvazyan A, Hall T J, Urban M W et al. An overview of elastography-an emerging branch of medical imaging[J]. Current Medical Imaging Reviews, 7, 255-282(2011). http://www.ncbi.nlm.nih.gov/pubmed/22308105/

    [3] Garra B S, Cespedes E I, Ophir J et al. Elastography of breast lesions: initial clinical results[J]. Radiology, 202, 79-86(1997). http://europepmc.org/abstract/MED/8988195

    [4] Yin M, Talwalkar J A, Glaser K J et al. Assessment of hepatic fibrosis with magnetic resonance elastography[J]. Clinical Gastroenterology and Hepatology, 5, 1207-1213(2007). http://www.ncbi.nlm.nih.gov/pubmed/17916548

    [5] Lyshchik A, Higashi T, Asato R et al. Thyroid gland tumor diagnosis at US elastography[J]. Radiology, 237, 202-211(2005). http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=16118150&link_type=MED&atom=%2Fqjmed%2F100%2F1%2F29.atom

    [6] Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 3, 199-211(1998).

    [7] Larin K V, Sampson D D. Optical coherence elastography: OCT at work in tissue biomechanics[J]. Biomedical Optics Express, 8, 1172-1202(2017). http://europepmc.org/abstract/MED/28271011

    [8] Shen Y H, Li Z F, Li H. Research status and prospect of optical coherence elastography[J]. Laser & Optoelectronics Progress, 51, 120006(2014).

    [9] Wang R K, Nuttall A L. Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study[J]. Journal of Biomedical Optics, 15, 056005(2010). http://europepmc.org/articles/pmc2948044/

    [10] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [11] Song S Z, Wei W, Hsieh B Y et al. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate[J]. Applied Physics Letters, 108, 191104(2016). http://scitation.aip.org/content/aip/journal/apl/108/19/10.1063/1.4949469

    [12] Singh M, Wu C, Liu C H et al. Phase-sensitive optical coherence elastography at 1.5 milliona-lines per second[J]. Optics Letters, 40, 2588-2591(2015). http://europepmc.org/abstract/MED/26030564

    [13] Wang S, Larin K V, Li J S et al. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity[J]. Laser Physics Letters, 10, 075605(2013). http://europepmc.org/abstract/MED/29805349

    [14] Alonso-Caneiro D, Karnowski K, Kaluzny B J et al. Assessment of corneal dynamics with high-speed swept sourceoptical coherence tomography combined with an air puff system[J]. Optics Express, 19, 14188-14199(2011).

    [15] Li C H, Huang Z H, Wang R K. Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry[J]. Optics Express, 19, 10153-10163(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-11-10153

    [16] Li C H, Guan G, Huang Z et al. Noncontact all-optical measurement of corneal elasticity[J]. Optics Letters, 37, 1625-1627(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-10-1625

    [17] Nguyen T M, Arnal B, Song S Z et al. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography[J]. Journal of Biomedical Optics, 20, 016001(2015). http://europepmc.org/articles/PMC4282275/

    [18] Qu Y Q, Ma T, He Y M et al. Acoustic radiation force optical coherence elastography of corneal tissue[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 288-294(2016). http://ieeexplore.ieee.org/document/7400990

    [19] Liang X, Orescanin M, Toohey K S et al. Acoustomotive optical coherence elastography for measuring material mechanical properties[J]. Optics letters, 34, 2894-2896(2009).

    [20] Ambroziński Ł, Pelivanov I, Song S et al. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media[J]. Applied Physics Letters, 109, 043701(2016). http://europepmc.org/abstract/MED/27493276

    [21] Ambroziński Ł, Song S, Yoon S J et al. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity[J]. Scientific Reports, 6, 38967(2016). http://www.nature.com/articles/srep38967

    [22] Nair A, Singh M, Aglyamov S R et al. Heartbeat OCE:corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography[J]. Journal of Biomedical Optics, 25, 055001(2020). http://www.researchgate.net/publication/341171027_Heartbeat_OCE_corneal_biomechanical_response_to_simulated_heartbeat_pulsation_measured_by_optical_coherence_elastography

    [23] Kirby M A, Pelivanov I, Song S Z et al. Optical coherence elastography in ophthalmology[J]. Journal of Biomedical Optics, 22, 121720(2017). http://europepmc.org/abstract/MED/29275544

    [24] Li J S, Wang S, Manapuram R K et al. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo[J]. Journal of Biomedical Optics, 18, 121503(2013). http://europepmc.org/abstract/MED/24089292

    [25] Wijesinghe P, McLaughlin R A, Sampson D D et al. Parametric imaging of viscoelasticity using optical coherence elastography[J]. Physics in Medicine and Biology, 60, 2293-2307(2015).

    [26] Qi W J, Li R, Ma T et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 103, 103704(2013). http://scitation.aip.org/content/aip/journal/apl/103/10/10.1063/1.4820252

    [27] Akca B I, Chang E W, Kling S et al. Observation of sound-induced corneal vibrational modes by optical coherence tomography[J]. Biomedical Optics Express, 6, 3313-3319(2015). http://www.opticsinfobase.org/abstract.cfm?uri=boe-6-9-3313

    [28] Han Z, Aglyamov S R, Li J et al. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation[J]. Journal of Biomedical Optics, 20, 20501(2015). http://www.ncbi.nlm.nih.gov/pubmed/25649624

    [29] Han Z L, Li J S, Singh M et al. Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography[J]. Applied Physics Letters, 106, 233702(2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464060/?report=reader

    [30] Han Z L, Li J S, Singh M et al. Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM[J]. Laser Physics Letters, 13, 035602(2016).

    [31] Han Z L, Li J S, Singh M et al. Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model[J]. Journal of the Mechanical Behavior of Biomedical Materials, 66, 87-94(2017). http://europepmc.org/abstract/med/27838594

    [32] Han Z, Li J, Singh M et al. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study[J]. Physics in Medicine and Biology, 60, 3531-3547(2015). http://www.ncbi.nlm.nih.gov/pubmed/25860076

    [33] Han Z, Singh M, Aglyamov S R et al. Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model[J]. Journal of Biomedical Optics, 21, 90504(2016). http://www.ncbi.nlm.nih.gov/pubmed/27653931

    [34] Wang S, Larin K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4410708/

    [35] Ophir J, Céspedes I, Ponnekanti H et al. Elastography: a quantitative method for imaging the elasticity of biological tissues[J]. Ultrasonic Imaging, 13, 111-134(1991). http://www.sciencedirect.com/science/article/pii/016173469190079w

    [36] McKnight A L, Kugel J L, Rossman P J et al. MR elastography of breast cancer: preliminary results[J]. AJR American Journal of Roentgenology, 178, 1411-1417(2002). http://europepmc.org/abstract/med/12034608

    [37] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 56, 930-933(1986).

    [38] Liang X, Graf B W, Boppart S A. In vivo multiphoton microscopy for investigating biomechanical properties of human skin[J]. Cellular and Molecular Bioengineering, 4, 231-238(2011). http://link.springer.com/article/10.1007/s12195-010-0147-6

    [39] Scarcelli G, Yun S H. Confocal Brillouin microscopy for three-dimensional mechanical imaging[J]. Nature Photonics, 2, 39-43(2007). http://www.ncbi.nlm.nih.gov/pubmed/19812712

    [40] Jacques S L, Kirkpatrick S J. Acoustically modulated speckle imaging of biological tissues[J]. Optics Letters, 23, 879-881(1998).

    [41] Mohan K D, Oldenburg A L. Elastography of soft materials and tissues by holographic imaging of surface acoustic waves[J]. Optics Express, 20, 18887-18897(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-17-18887

    [42] Brandão M M, Fontes A, Barjas-Castro M L et al. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease[J]. European Journal of Haematology, 70, 207-211(2003).

    [43] Fung Y C, Skalak R. Biomechanics mechanical properties of living tissues[J]. Journal of Applied Mechanics, 49, 464-465(1982).

    [44] Scarcelli G, Kling S, Quijano E et al. Brillouin microscopy of collagen crosslinking:noncontact depth-dependent analysis of corneal elastic modulus[J]. Investigative Ophthalmology & Visual Science, 54, 1418-1425(2013). http://www.ncbi.nlm.nih.gov/pubmed/23361513

    [45] Scarcelli G, Besner S, Pineda R et al. In vivo biomechanical mapping of normal and keratoconus corneas[J]. JAMA Ophthalmology, 133, 480-482(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4698984/

    [46] Scarcelli G, Kim P, Yun S H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy[J]. Biophysical Journal, 101, 1539-1545(2011). http://www.cell.com/biophysj/abstract/S0006-3495(11)00950-7

    [47] Righetti R, Ophir J, Ktonas P. Axial resolution in elastography[J]. Ultrasound in Medicine & Biology, 28, 101-113(2002).

    [48] Braun J, Guo J, Lützkendorf R et al. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T[J]. NeuroImage, 90, 308-314(2014). http://europepmc.org/abstract/med/24368262

    [49] Johnson C L, McGarry M D, van Houten E E et al. Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction[J]. Magnetic Resonance in Medicine, 70, 404-412(2013).

    [50] Itoh A, Ueno E, Tohno E et al. Breast disease:clinical application of US elastography for diagnosis[J]. Radiology, 239, 341-350(2006).

    [51] Fujimoto J G, Brezinski M E, Tearney G J et al. Optical biopsy and imaging using optical coherence tomography[J]. Nature Medicine, 1, 970-972(1995). http://www.nature.com/articles/nm0995-970

    [52] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nature Biotechnology, 21, 1361-1367(2003). http://europepmc.org/abstract/MED/14595364

    [53] Sun C, Standish B, Yang V X. Optical coherence elastography: current status and future applications[J]. Journal of Biomedical Optics, 16, 043001(2011).

    [54] Kennedy B F, Kennedy K M, Sampson D D. A review of optical coherence elastography:fundamentals, techniques and prospects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 272-288(2014). http://ieeexplore.ieee.org/document/6670078/references

    [55] Ramier A, Tavakol B, Yun S H. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography[J]. Optics Express, 27, 16635-16649(2019). http://www.ncbi.nlm.nih.gov/pubmed/31252887

    [56] Ramier A, Eltony A M, Chen Y et al. In vivo measurement of shear modulus of the human cornea using optical coherence elastography[J]. Scientific Reports, 10, 17366(2020). http://www.nature.com/articles/s41598-020-74383-4

    [57] Sarvazyan A P, Rudenko O V, Swanson S D et al. Shear wave elasticity imaging:a new ultrasonic technology of medical diagnostics[J]. Ultrasound in Medicine & Biology, 24, 1419-1435(1998). http://www.sciencedirect.com/science/article/pii/S0301562998001100

    [58] Nightingale K R, Palmeri M L, Nightingale R W et al. On the feasibility of remote palpation using acoustic radiation force[J]. The Journal of the Acoustical Society of America, 110, 625-634(2001). http://scitation.aip.org/content/asa/journal/jasa/110/1/10.1121/1.1378344

    [59] Wang S, Aglyamov S, Karpiouk A et al. Assessing the mechanical properties of tissue-mimicking phantoms at different depths as an approach to measure biomechanical gradient of crystalline lens[J]. Biomedical Optics Express, 4, 2769-2780(2013). http://www.ncbi.nlm.nih.gov/pubmed/24409379

    [60] Razani M, Mariampillai A, Sun C R et al. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms[J]. Biomedical Optics Express, 3, 972-980(2012).

    [61] Razani M, Luk T W H, Mariampillai A et al. Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples[J]. Biomedical Optics Express, 5, 895-906(2014).

    [62] Nguyen T M, Song S, Arnal B et al. Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography[J]. Optics Letters, 39, 838-841(2014). http://www.ncbi.nlm.nih.gov/pubmed/24562220

    [63] Zhu J, Miao Y S, Qi L et al. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography[J]. Applied Physics Letters, 110, 201101(2017). http://europepmc.org/abstract/MED/28611483

    [64] Qu Y, He Y, Saidi A et al. In vivo elasticity mapping of posterior ocular layers using acoustic radiation force optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 59, 455-461(2018). http://europepmc.org/articles/PMC5783626/

    [65] Ejofodomi O A, Zderic V, Zara J M. Development of novel imaging probe for optical/acoustic radiation imaging (OARI)[J]. Medical Physics, 40, 111910(2013). http://onlinelibrary.wiley.com/doi/10.1118/1.4824149

    [66] Qi W, Li R, Ma T et al. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 104, 123702(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6780384

    [67] Qu Y, Ma T, He Y et al. Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography[J]. Scientific Reports, 7, 4731(2017). http://europepmc.org/abstract/MED/28680156

    [68] Luce D A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J]. Journal of Cataract & Refractive Surgery, 31, 156-162(2005). http://www.sciencedirect.com/science/article/pii/S088633500401065X

    [69] Hong J X, Xu J J, Wei A J et al. A new tonometer: the corvis ST tonometer: clinical comparison with noncontact and goldmann applanation tonometers[J]. Investigative Ophthalmology & Visual Science, 54, 659-665(2013). http://www.ncbi.nlm.nih.gov/pubmed/23307970

    [70] Wang S, Larin K V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea[J]. Biomedical Optics Express, 5, 3807-3821(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4242019/?lang=fr

    [71] Wang S, Li J, Manapuram R K et al. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system[J]. Optics letters, 37, 5184-5186(2012).

    [72] Li J S, Han Z L, Singh M et al. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography[J]. Journal of Biomedical Optics, 19, 110502(2014). http://www.ncbi.nlm.nih.gov/pubmed/25408955

    [73] Li J S, Wang S, Singh M et al. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo[J]. Laser Physics Letters, 11, 065601(2014).

    [74] Liu C H, Skryabina M N, Li J et al. Measurement of the temperature dependence of Young’s modulus of cartilage by phase-sensitive optical coherence elastography[J]. Quantum Electronics, 44, 751-756(2014). http://www.mathnet.ru/eng/qe16018

    [75] Twa M D, Li J S, Vantipalli S et al. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking[J]. Biomedical Optics Express, 5, 1419-1427(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4026912/

    [76] Wang S, Larin K V. Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics[J]. Optics Letters, 39, 41-44(2014).

    [77] Wang S, Lopez A L, Morikawa Y et al. Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography[J]. Biomedical Optics Express, 5, 1980-1992(2014). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102343/

    [78] Du Y, Liu C H, Lei L et al. Rapid, noninvasive quantitation of skin disease in systemic sclerosis using optical coherence elastography[J]. Journal of Biomedical Optics, 21, 46002(2016). http://europepmc.org/abstract/MED/27048877

    [79] Singh M, Li J, Han Z et al. Evaluating the effects of riboflavin/UV-A and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 57, OCT112-OCT120(2016).

    [80] Singh M, Li J, Han Z et al. Investigating elastic anisotropy of the porcine cornea as a function of intraocular pressure with optical coherence elastography[J]. Journal of Refractive Surgery, 32, 562-567(2016). http://europepmc.org/abstract/med/27505317

    [81] Singh M, Li J S, Vantipalli S et al. Noncontact elastic wave imaging optical coherence elastography for evaluating changes in corneal elasticity due to crosslinking[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 266-276(2016). http://www.onacademic.com/detail/journal_1000038766552910_74f0.html

    [82] Lan G P, Aglyamov S, Larin K V, Twa M D. In-vivo human corneal shear-wave optical coherence elastography[J]. Optometry and Vision Science., 98, 58-63(2021). http://journals.lww.com/optvissci/Fulltext/2021/01000/In_Vivo_Human_Corneal_Shear_wave_Optical_Coherence.9.aspx

    [83] Lan G P, Larin K V, Aglyamov S et al. Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography[J]. Biomedical Optics Express, 11, 3301-3318(2020). http://www.researchgate.net/publication/341324587_Characterization_of_natural_frequencies_from_nanoscale_tissue_oscillations_using_phase-sensitive_optical_coherence_elastography

    [84] Lan G P, Aglyamov S, Larin K V et al. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: repeatability and reproducibility[J]. Journal of Biomechanics, 121, 110427(2021). http://www.sciencedirect.com/science/article/pii/S0021929021002074

    [85] Lan G P, Twa M D. Theory and design of Schwarzschild scan objective for optical coherence Tomography[J]. Optics Express, 27, 5048-5064(2019). http://www.researchgate.net/publication/331031614_Theory_and_design_of_Schwarzschild_scan_objective_for_Optical_Coherence_Tomography

    [86] Singh M, Wang S, Yee R W et al. Optical coherence tomography as a tool for real-time visual feedback and biomechanical assessment of dermal filler injections: preliminary results in a pig skin model[J]. Experimental Dermatology, 25, 475-476(2016). http://europepmc.org/abstract/MED/26910121

    [87] Lan G P, Gu B Y, Larin K V et al. Clinical corneal optical coherence elastography measurement precision: effect of heartbeat and respiration[J]. Translational Vision Science & Technology, 9, 3(2020). http://www.researchgate.net/publication/340566883_Clinical_Corneal_Optical_Coherence_Elastography_Measurement_Precision_Effect_of_Heartbeat_and_Respiration

    [88] Fu J, Haghighi-Abayneh M, Pierron F et al. Depth-resolved full-field measurement of corneal deformation by optical coherence tomography and digital volume correlation[J]. Experimental Mechanics, 56, 1203-1217(2016). http://link.springer.com/article/10.1007/s11340-016-0165-y

    [89] Li P, Liu A, Shi L et al. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography[J]. Physics in Medicine & Biology, 56, 7081-7092(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3296455/

    [90] Lan G P, Singh M, Larin K V et al. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography[J]. Biomedical Optics Express, 8, 5253-5266(2017). http://www.ncbi.nlm.nih.gov/pubmed/29188118

    [91] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [92] Wei B, Yuan Z L, Tang Z L. Three-dimensional imaging of tumor tissues based on photothermal optical coherence tomography[J]. Acta Optica Sinica, 40, 0411002(2020).

    [93] Wang Q, Peng H L, Wang P H et al. Dither removing of three-dimensional optical coherence tomography retinal image[J]. Acta Optica Sinica, 39, 0317001(2019).

    [94] Gao Y, Li Z L, Zhang J H et al. Automatic measurement method for corneal thickness of optical coherence tomography images[J]. Acta Optica Sinica, 39, 0311003(2019).

    [95] Si P J, Wang L, Xu M E. Tumor cell invasion imaging based on optical coherence tomography[J]. Chinese Journal of Lasers, 46, 0907003(2019).

    [96] Luo S T, Fan Y W, Chang W et al. Boundary region of stomach mucinous carcinoma with swept source optical coherence tomography[J]. Acta Optica Sinica, 38, 0517001(2018).

    [97] Li P, An L, Lan G P et al. Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate[J]. Journal of Biomedical Optics, 18, 016012(2013). http://europepmc.org/articles/PMC3548517/

    [98] An L, Li P, Lan G P et al. High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth[J]. Biomedical Optics Express, 4, 245-259(2013). http://europepmc.org/articles/PMC3567712/

    [99] Izatt J A, Choma M A. Theory of optical coherence tomography[M]. //Drexler W, Fujimoto J G. Optical coherence tomography, biological and medical physics, biomedical engineering, 47-72(2008).

    [100] Li P, Yang S S, Ding Z H et al. Research progressin Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [101] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography: principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [102] Leitgeb R, Wojtkowski M, Kowalczyk A et al. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography[J]. Optics Letters, 25, 820-822(2000). http://europepmc.org/abstract/MED/18064195

    [103] Guo X, Wang X Z, Nan N et al. A depth resolution enhancement technique in Fourier domain optical coherence tomography[J]. Acta Optica Sinica, 35, 311002(2015).

    [104] Zhang T Z, Kong F P, Zeng Y G et al. Phase-resolved optical coherence elastography based on multi-differential operation[J]. Journal of Optoelectronics·Laser, 29, 459-464(2018).

    [105] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [106] Häusler G. “coherence radar” and “spectral radar”: new tools for dermatological diagnosis[J]. Journal of Biomedical Optics, 3, 21-31(1998). http://europepmc.org/abstract/MED/23015002

    [107] Chen Y P. Review on optical coherence tomography[J]. Value Engineering, 33, 255-256(2014).

    [108] Wang X, Li Z L, Nan N et al. A method to improve sensitivity of swept source optical coherence tomography system[J]. Chinese Journal of Lasers, 44, 807002(2017).

    [109] Hu Z, Rollins A M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer[J]. Optics Letters, 32, 3525-3527(2007). http://www.opticsinfobase.org/ol/abstract.cfm?id=148355

    [110] Lan G, Li G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).

    [111] Wang P F, Tong X L, Deng C W et al. High-speed broadband swept source[J]. Laser & Optoelectronics Progress, 56, 201101(2019).

    [112] Zhang J, Jung W, Nelson J S et al. Full range polarization-sensitive Fourier domain optical coherence tomography[J]. Optics Express, 12, 6033-6039(2004). http://europepmc.org/abstract/MED/19488244

    [113] Wang R K, Ma Z H, Kirkpatrick S J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue[J]. Applied Physics Letters, 89, 144103(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4822532

    [114] Li P, Cheng Y, Li P et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 41, 3944-3947(2016).

    [115] Qiu J R, Han T, Wang D et al. Probes for endoscopic optical coherence tomography: minimized design and depth of focus extension[J]. Chinese Journal of Lasers, 47, 0207013(2020).

    [116] Sun W, Li J N, Qi L Y et al. Detection of dental root fractures based on endoscopic swept source optical coherence tomography[J]. Acta Optica Sinica, 39, 0811002(2019).

    [117] Lu D X, Fang W H, Li Y Y et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 919-935(2020).

    [118] Rogowska J, Patel N A, Fujimoto J G et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J]. Heart (British Cardiac Society), 90, 556-562(2004). http://dx.doi.org/10.1136/hrt.2003.016956

    [119] Yuan Z L, Chen J B, Huang W Y et al. Speckle noise reduction of optical coherence tomography based on robust principle component analysis algorithm[J]. Acta Optica Sinica, 38, 0511002(2018).

    [120] Li P, Zhou L P, Ni Y et al. Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction[J]. Journal of Biomedical Optics, 21, 086014(2016). http://www.ncbi.nlm.nih.gov/pubmed/27557343

    [121] Chen Y, Li Z L, Nan N et al. Speckle noise reduction in fourier domain polarization-sensitive coherence tomography by split-spectrum[J]. Acta Optica Sinica, 38, 0811004(2018).

    [122] Chau A H, Chan R C, Shishkov M et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography[J]. Annals of Biomedical Engineering, 32, 1494-1503(2004). http://www.ncbi.nlm.nih.gov/pubmed/15636110

    [123] Chan R C, Chau A H, Karl W C et al. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics[J]. Optics Express, 12, 4558-4572(2004).

    [124] Liang X, Oldenburg A L, Crecea V et al. Optical micro-scale mapping of dynamic biomechanical tissue properties[J]. Optics Express, 16, 11052-11065(2008). http://europepmc.org/articles/PMC2883328

    [125] Hendriks F M, Brokken D, Oomens C W J et al. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments[J]. Medical Engineering & Physics, 28, 259-266(2006).

    [126] Ko H J, Tan W, Stack R et al. Optical coherence elastography of engineered and developing tissue[J]. Tissue Engineering, 12, 63-73(2006). http://europepmc.org/abstract/MED/16499443

    [127] Rogowska J, Patel N, Plummer S et al. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties[J]. The British Journal of Radiology, 79, 707-711(2006).

    [128] Kirkpatrick S J, Wang R K, Duncan D D. OCT-based elastography for large and small deformations[J]. Optics Express, 14, 11585-11597(2006).

    [129] Wang R K, Kirkpatrick S, Hinds M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time[J]. Applied Physics Letters, 90, 164105(2007). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4826332

    [130] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005).

    [131] Kennedy B F, McLaughlin R A, Kennedy K M et al. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure[J]. Biomedical Optics Express, 5, 2113-2124(2014).

    [132] Kennedy B F, Koh S H, Mclaughlin R A et al. Strain estimation in phase-sensitive optical coherence elastography[J]. Biomedical Optics Express, 3, 1865-1879(2012). http://www.opticsinfobase.org/abstract.cfm?uri=boe-3-8-1865

    [133] Li Y, Moon S, Chen J J et al. Ultrahigh-sensitive optical coherence elastography[J]. Light, Science & Applications, 9, 58(2020). http://www.nature.com/articles/s41377-020-0297-9

    [134] Kling S, Hafezi F. Corneal biomechanics: a review[J]. Ophthalmic and Physiological Optics, 37, 240-252(2017).

    [135] Özkaya N, Nordin M, Goldsheyder D et al. Fundamentals of biomechanics[M](2012).

    [136] Sridhar M, Insana M F. Ultrasonic measurements of breast viscoelasticity[J]. Medical physics, 34, 4757-4767(2007). http://www.ncbi.nlm.nih.gov/pubmed/18196803

    [137] Crecea V, Oldenburg A L, Liang X et al. Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials[J]. Optics Express, 17, 23114-23122(2009). http://pubmedcentralcanada.ca/pmcc/articles/pmid/20052238

    [138] Oldenburg A L, Boppart S A. Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography[J]. Physics in Medicine & Biology, 55, 1189-1201(2010). http://www.ncbi.nlm.nih.gov/pubmed/20124653

    [139] Wu C, Han Z, Wang S et al. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system[J]. Investigative Ophthalmology & Visual Science, 56, 1292-1300(2015). http://europepmc.org/abstract/med/25613945

    [140] Lan G P, Tan H S, An L et al. Multi-beam elastic measuring system and method based on optical switch and microlens array: CN109674441A[P](2019).

    [141] Lan G P, Tu M, Huang Y P et al. Common-path micro-lens array multi-beam optical coherent elasticity measuring system and method: CN109620131A[P](2019).

    [142] Lan G P, Tu M, Chen G J et al. Common-light-path multi-beam optical coherence elasticity measurement system and method: CN109620130A[P](2019).

    [143] Lan G P, Chen G J, Xu J J et al. Multi-beam optical coherence elasticity measuring system and method based on microlens array: CN109645954A[P](2019).

    [144] Lan G P, An L, Xu J J et al. Multi-detection-light-beam optical coherence in-vivo cornea elasticity measurement system and method: CN109620132A[P](2019).

    [145] Tanter M, Touboul D, Gennisson J L et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 28, 1881-1893(2009). http://europepmc.org/abstract/MED/19423431

    [146] Sigrist R M S, Liau J, Kaffas A E et al. Ultrasound elastography: review of techniques and clinical applications[J]. Theranostics, 7, 1303-1329(2017). http://europepmc.org/abstract/MED/28435467

    [147] Carstensen E L, Parker K J, Lerner R M. Elastography in the management of liver disease[J]. Ultrasound in Medicine & Biology, 34, 1535-1546(2008). http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ027817412.aspx

    [148] Li C H, Guan G Y, Zhang F et al. Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: a solution for practical application[J]. Biomedical Optics Express, 5, 1403-1418(2014). http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-5-5-1403

    [149] Pelivanov I, Gao L, Pitre J et al. Does group velocity always reflect elastic modulus in shear wave elastography?[J]. Journal of Biomedical Optics, 24, 76003(2019). http://proceedings.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-24/issue-07/076003/Does-group-velocity-always-reflect-elastic-modulus-in-shear-wave/10.1117/1.JBO.24.7.076003.full

    [150] Abyaneh M H, Wildman R D, Ashcroft I A et al. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis[J]. Journal of the Mechanical Behavior of Biomedical Materials, 27, 239-248(2013). http://www.sciencedirect.com/science/article/pii/S1751616113001811

    [151] Zvietcovich F, Pongchalee P, Meemon P et al. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers[J]. Nature Communications, 10, 4895(2019). http://www.nature.com/articles/s41467-019-12803-4

    [152] Aglyamov S R, Wang S, Karpiouk A B et al. The dynamic deformation of a layered viscoelastic medium under surface excitation[J]. Physics in Medicine and Biology, 60, 4295-4312(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4472317/

    Yicheng Wang, Wenjie Li, Yanping Huang, Jinping Feng, Guoqin Ma, Qun Shi, Lin An, Jingjiang Xu, Jia Qin, Haishu Tan, Gongpu Lan. Advances in Optical Coherence Elastography[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1400003
    Download Citation