[1] J.J. Degnan.
[2] D. Kucharski, G. Kirchner, F. Koidl, C. Fan, R. Carman, C. Moore, A. Dmytrotsa, M. Ploner, G. Bianco, M. Medvedskij. Attitude and spin period of space debris Envisat measured by satellite laser ranging.
[3] M.A. Steindorfer, G. Kirchner, F. Koidl, Peiyuan Wang, B. Jilete, T. Flohrer. Daylight space debris laser ranging.
[4] L. Zhulian, Z. Haitao, L. Yuqiang, F. Honglin, Z. Dongsheng. 53 cm binocular telescope high repetition frequency space debris laser ranging system.
[5] D. Xue, H. Xingwei, S. Qingli, L. Zhipeng, F. Cunbo, Z. Haitao. Research of space debris laser ranging system.
[6] H. Zhang, H. Deng, Z. Wu, K. Tang, Z. Zhang. Observations of space debris by ground-based laser ranging system.
[7] Y. Li, R. Li, Z. Li, D. Zhai, D. Fu, Y. Xiong. Application research on space debris laser ranging.
[8] Y. Li, Z. Li, H. Fu, X. Zheng, S. He, D. Zhai, Y. Xiong. Experimentation of diffuse reflection laser ranging of space debris.
[9] W. Meng, H. Zhang, H. Deng et al. 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection.
[10] Z. Zhang, H. Zhang, M. Long, H. Deng, Z. Wu, W. Meng. High precision space debris laser ranging with 4.2 W double-pulse picosecond laser at 1 kHz in 532 nm.
[11] M.L. Long, H.R. Deng, H.F. Zhang. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging.
[12] G. Kirchner, F. Koidl, M. Ploner, P. Lauber, J. Utzinger, U. Schreiber, J. Eckl, M. Wilkinson, R. Sherwood, A. Giessen, M. Weigel. Multistatic laser ranging to space debris, 13-0213(2013).
[13] Z. Zhang, H. Zhang, H. Deng et al. Experiment of laser ranging to space debris by using two receiving telescopes.
[14] C. Li, Z. Li, R. Tang et al. Target distance measurement experiment with a bi-static satellite laser ranging system.
[15] Z. Li, D. Zhai, H. Zhang et al. Superconductivity detector applied to daytime satellite laser ranging experiment and research.
[16] L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, Y. Xiong. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength.
[17] J. Sang, J.C. Bennett. Achievable debris orbit prediction accuracy using laser ranging data from a single station.
[18] S. Kim, H.C. Lim, J.C. Bennett et al. Analysis of space debris orbit prediction using angle and laser ranging data from two tracking sites under limited observation environment.
[19] X. Zhang, X. Zhao, R. Li et al. Research on real-time correction method of laser ranging prediction of non-cooperative target.
[20] J. Gao, Z. Liang, X. Han et al. Range prediction deviation real-time correction algorithm for space debris laser ranging.
[21] C.L. Lv, H. Zhou, H. Li, L.X. You, X.Y. Liu, Y. Wang, W.J. Zhang, S.J. Chen, Z. Wang, X.M. Xie. Large active area superconducting single-nanowire photon detector with a 100 μm diameter.
[22] Y. LiXing. Recent progress on superconducting nanowire single photon detector.
[23] R. Tang, Z. Li, Y. Li, X. Pi, X. Su, R. Li, H. Zhang, D. Zhai, H. Fu. Light curve measurements with a superconducting nanowire single-photon detector.
[24] S. Ye, C. Huang.
[25] C. Zhao, J. Shang, Q. Feng, J. Guo, Z. Wei, Y. Li.
[26] Q. Chen, B. Zhang, L. Zhang. Sixteen-pixel NbN nanowire single photon detector coupled with 300-μm fiber.
[27] L. Zhang, C. Wan, M. Gu, R. Xu, S. Zhang, L. Kang, J. Chen, P. Wu. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors.
[28] Z. Haitao, L. Zhulian, T. Rufeng, Z. Dongsheng, L. Rongwang, P. Xiaoyu, F. Honglin, L. Yuqiang. Application of array detection technology in laser ranging.
[29] J.J. Degnan. Possible pathways to producing rapid millimeter accuracy normal points, 15(2019).
[30] F. Lebrun, P. Léna, F. Mignard, L. Mugnier, D. Pelat, D. Rouan.