• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 050102 (2019)
Jin Chen, Kai Tan*, and Weiguo Zhang
Author Affiliations
  • State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.3788/LOP56.050102 Cite this Article Set citation alerts
    Jin Chen, Kai Tan, Weiguo Zhang. Correction of Terrestrial Laser Scanning Ranging Errors from Specular Reflection Based on Original Intensity Data[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050102 Copy Citation Text show less
    References

    [1] Yang B S, Liang F X, Huang R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 46, 1509-1516(2017).

    [2] Fang W, Huang X F, Zhang F et al. Mural image rectification based on correction of laser point cloud intensity[J]. Acta Geodaetica et Cartographica Sinica, 44, 541-547(2015).

    [3] Huang L, Lu X S, Liang Y. Building façade extraction and classification using laser scanning intensity[J]. Geomatics and Information Science of Wuhan University, 34, 195-198(2009).

    [4] Cheng X L, Cheng X J. GuoW, et al. Point cloud classification and features extraction of building facades with the corrected laser intensity value[J]. Journal of Tongji University (Natural Science), 43, 1432-1437(2015).

    [5] Tan K, Cheng X J, Ju Q Q et al. Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels[J]. IEEE Geoscience and Remote Sensing Letters, 13, 1711-1715(2016). http://ieeexplore.ieee.org/document/7563834/

    [6] Li C, Lu X P, Zhu N N et al. Continuously extracting section and deformation analysis for subway tunnel based on LiDAR points[J]. Acta Geodaetica et Cartographica Sinica, 44, 1056-1062(2015).

    [7] Crommelinck S, Höfle B. Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements[J]. Remote Sensing, 8, 205(2016).

    [8] Koenig K, Höfle B, Hämmerle M et al. Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 112-125(2015). http://www.sciencedirect.com/science/article/pii/s0924271615000623

    [9] Soudarissanane S, Lindenbergh R, Menenti M et al. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 389-399(2011). http://www.sciencedirect.com/science/article/pii/S0924271611000098

    [10] Zhang Y, Yan L, Yang H et al[J]. Research on systematic error model of terrestrial laser scanning Bulletin of Surveying and Mapping, 2012, 16-19.

    [11] Liu C, Zhang Y L, Wu H B. Accuracy evaluation of 3D laser range scanner based on field calibration[J]. Geotechnical Investigation & Surveying, 37, 56-60(2009).

    [12] Cai J M, Hua X H, Xuan W et al. Research on systematic error model of terrestrial laser scanner and precision analysis[J]. Journal of Geomatics, 41, 17-21(2016).

    [13] Mao A Q, Zhu Y H, Hao S B et al[J]. The research of accuracy evaluation method and error correction model based on 3D laser scanner Bulletin of Surveying and Mapping, 2014, 72-75.

    [14] Lichti D D, Gordon S J, Tipdecho T. Error models and propagation in directly georeferenced terrestrial laser scanner networks[J]. Journal of Surveying Engineering, 131, 135-142(2005). http://www.nrcresearchpress.com/servlet/linkout?suffix=rg11/ref11&dbid=16&doi=10.1139%2FT10-067&key=10.1061%2F(ASCE)0733-9453(2005)131%3A4(135)

    [15] Lichti D D. Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 61, 307-324(2007). http://www.sciencedirect.com/science/article/pii/S0924271606001298

    [16] Hu Y H[M]. Laser imaging target reconnaissance(2013).

    [17] Tan K, Cheng X J. Specular reflection effects elimination in terrestrial laser scanning intensity data using phong model[J]. Remote Sensing, 9, 853(2017).

    [18] Ding Q, Chen W, King B et al. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 75, 40-47(2013).

    [19] You H T, Wang T J, Skidmore A et al. Quantifying the effects of normalisation of airborne LiDAR intensity on coniferous forest leaf area index estimations[J]. Remote Sensing, 9, 163(2017).

    [20] Tan K, Cheng X J. Correction methods of laser intensity and accuracy of point cloud classification[J]. Journal of Tongji University: Social Science Section, 42, 131-135(2014).

    [21] Tan K, Cheng X J, Zhang J X. Correction for incidence angle and distance effects on TLS intensity data[J]. Geomatics and Information Science of Wuhan University, 42, 223-228(2017).

    [22] Tan K, Cheng X J. Adaptive unsupervised classification of TLS point cloud based on intensity data[J]. Laser & Optoelectronics Progress, 53, 032801(2016).

    [23] Wujanz D, Burger M, Mettenleiter M et al. An intensity-based stochastic model for terrestrial laser scanners[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 146-155(2017).

    [24] Zhao S, Xi Q, Liu S L et al. Model of terrestrial laser scanner range errors based on intensity of echo[J]. Science of Surveying and Mapping, 38, 169-171,174(2013).

    [25] Tan K, Cheng X J. Intensity data correction based on incidence angle and distance for terrestrial laser scanner[J]. Journal of Applied Remote Sensing, 9, 094094(2015).

    Jin Chen, Kai Tan, Weiguo Zhang. Correction of Terrestrial Laser Scanning Ranging Errors from Specular Reflection Based on Original Intensity Data[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050102
    Download Citation