• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180672 (2019)
Zhu Yiliang1、*, Xie Xiaozhu1、2, Huang Qingpeng1, Hu Wei1, and Ren Qinglei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180672 Cite this Article
    Zhu Yiliang, Xie Xiaozhu, Huang Qingpeng, Hu Wei, Ren Qinglei. Femtosecond green laser processing of magnesium alloy[J]. Opto-Electronic Engineering, 2019, 46(8): 180672 Copy Citation Text show less
    References

    [1] Han H S, Kim Y Y, Kim Y C, et al. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model[J]. Metals and Materials International, 2012, 18(2): 243–247.

    [2] Witte F, Reifenrath J, Müller P P, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement[J]. Materialwissenschaft Und Werkstofftechnik, 2006, 37(6): 504–508.

    [3] Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31(8): 2084–2096.

    [4] Li J, Zhang H C. Preparation and wetting behavior of superhydrophobic surface on MB8 magnesium alloy[J]. Chinese Journal of Materials Research, 2012, 26(3): 240–246.

    [5] Guan Y C, Zhou W, Li Z L, et al. Effect of processing environment on laser-induced darkening evolution in magnesium alloy[J]. Optics and Lasers in Engineering, 2014, 52: 35–40.

    [6] Guan Y C, Zhou W, Zheng H Y, et al. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser[J]. Applied Surface Science, 2013, 280: 462–466.

    [7] Guan Y C, Zhou W, Li Z L, et al. Femtosecond laser-induced ripple structures on magnesium[J]. Applied Physics A, 2014, 115(1): 13–18.

    [8] Shi H X, Cui Z Q, Wang W X, et al. Blackening of magnesium alloy using femtosecond laser[J]. Applied Optics, 2015, 54(25): 7766–7772.

    [9] Demir A G, Previtali B. Dross-free submerged laser cutting of AZ31 Mg alloy for biodegradable stents[J]. Journal of Laser Applications, 2016, 28(3): 032001.

    [10] Yang H, Cao Y, Li F P, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160–1168.

    [11] Long J Y, Wu Y C, Gong D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7): 0706002.

    [12] Long J Y, Fan P X, Gong D W, et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 0800001.

    [13] Stenzel E, Gogoll S, Sils J, et al. Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades[J]. Applied Surface Science, 1997, 109–110: 162–167.

    [14] Bonse J, Wrobel J M, Krüger J, et al. Ultrashort-pulse laser ablation of indium phosphide in air[J]. Applied Physics A, 2001, 72(1): 89–94.

    [15] Li F, Chen X G, Lin W H, et al. Nanosecond laser ablation of Al-Si coating on boron steel[J]. Surface and Coatings Technology, 2017, 319: 129–135.

    [16] Yang Q, Ji L F, Xu B, et al. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3 glass[J]. Opto-Electronic Engineering, 2017, 44(12): 1200–1209.

    [17] Konig J, Nolte S, Tünnermann A. Plasma evolution during metal ablation with ultrashort laser pulses[J]. Optics Express, 2005, 13(26): 10597–10607.

    [18] Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: composition, microstructure and corrosion[J]. Acta Metallurgica Sinica, 2018, 54(9): 1215–1235.

    [19] Yu K, Lei L, Chen L J, et al. Corrosion behavior of magnesium alloy in the biological environment[J]. Metallic Functional Materials, 2011, 18(2): 32–36.

    Zhu Yiliang, Xie Xiaozhu, Huang Qingpeng, Hu Wei, Ren Qinglei. Femtosecond green laser processing of magnesium alloy[J]. Opto-Electronic Engineering, 2019, 46(8): 180672
    Download Citation