• Journal of Innovative Optical Health Sciences
  • Vol. 1, Issue 1, 1 (2008)
BRITTON CHANCE* and SHOKO NIOKA
Author Affiliations
  • Department of Biochemistry and Biophysics University of Pennsylvania, PA USA Britton Chance Center for Biomedical Photonics Wuhan National Lab for Optoelectronics Huazhong University of Science and Technology Wuhan, China
  • show less
    DOI: Cite this Article
    BRITTON CHANCE, SHOKO NIOKA. HISTORY AND PRESENT STATE OF TRANSLATIONAL ELECTRO-OPTICAL APPLICATIONS TO MEDICINE[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 1 Copy Citation Text show less
    References

    [1] L. Adrian, “Sir charles scott Sherrington O.M., 1857–1952,” Notes and Records of the Royal Society of London 12, 211–215 (1957).

    [2] A. Beckman, http://www.beckman-foundation.com/founder.html.

    [3] R. W. Burns, Russell W, The Life and Times of A. D. Blumlein (IEEE History of Technology series, 2000).

    [4] http://www.ieee.org/web/aboutus/history center/biography/rajchman.html.

    [5] Britton Chance Patent US Patents: 2228199, 2228200, 2102511, 2102512, 2102513, 2132676, 2132677, 2182696, 2182717, 2185074, 2289242, 2337589.

    [6] K. L. Wildes and N. A. Lindgren, A Century of Electrical Engineering and Computer Science at MIT, 1882–1982 (K. L. Wildes, Nilo. A. Lindgren, MIT Press 1985).

    [7] J. Stokes, 70 Years of Radio Tubes and Valves (Vestal Press, NY, 1982), pp. 111–115.

    [8] J. W. Perry, “The F/1.8 quartz monochromator-spectrograph,” Trans. Opt. Soc. 33, 159–175 (1931).

    [9] H. A. Krebs, Otto Warburg: Cell Physiologist, Biochemist and Eccentric (Oxford University Press 1981).

    [10] B. Chance, “Rapid and sensitive spectrophotometry. I. The accelerated and stoppedflow methods for the measurement of the reaction kinetics and spectra of unstable compounds in the visible region of the spectrum,” Rev. Sci. Instru. 22, 619–627 (1951).

    [11] E. C. Slater, “Reflections Keilin, cytochrome and the respiratory chain,” J. Biol. Chem. 278, 16455–16461 (2003).

    [12] B. Chance, “The kinetics of the enzyme-substrate compound of peroxidase,” J. Biol. Chem. 151, 553–577 (1943).

    [13] A. Claude, “Electron microscope studies of cells by the method of replicas,” J. Exp. Med. 89, 425 (1949).

    [14] B. Chance, “Rapid and sensitive spectrophotometry. III. A double beam apparatus,” Rev. Sci. Instru. 22, 634–638 (1951).

    [15] B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization,” J. Biol. Chem. 217, 383–393 (1955).

    [16] B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. II. Difference spectra,” J. Biol. Chem. 217, 395–407 (1955).

    [17] B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III The steady state,” J. Biol. Chem. 217, 409–427 (1955).

    [18] B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. IV The respiratory chain,” J. Biol. Chem. 217, 429–438 (1955).

    [19] B. Chance, G. R. Williams, W. F. Holmes and J. Higgins, “Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation,” J. Biol. Chem. 217, 439–451 (1955).

    [20] B. Chance and G. R. Williams, “A simple and rapid assay of oxidative phosphorylation,” Nature 175, 1120–1124 (1955).

    [21] B. Chance and G. R. Williams, “A method for the localization of sites for oxidative phosphorylation,” 176, 250–254 (1955).

    [22] F. F. J¨obsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).

    [23] B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka and R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).

    [24] M. S. Patterson, B. Chance and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” J. Appl. Optics 28, 2331–2336 (1989).

    [25] A. G. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48, 34–40 (1995).

    [26] J. C. Hebden and D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Optics Letters 19, 311–313 (1994).

    [27] S. Fantini, M. A. Franceschini and E. Gratton, “Effective source term in the diffusion equation for photon transport in turbid media,” Appl Opt. 36, 156–163 (1997).

    [28] J. C. Hebden, A. Gibson, R. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. Meek and J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phy. Med. Biol. 47, 4155–4166 (2002).

    [29] D. K. Joseph, T. J. Huppert, M. A. Franceschini and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging,” Applied Optics 45, 8142– 8151 (2006).

    [30] H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42, 3054–3062 (2003).

    [31] D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. M¨oller, C. Stroszczynski, J. St¨ossel, B. Wassermann, P. M. Schlag and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography,” Phys. Med. Biol. 49, 1165–1181 (2004).

    [32] T. D. Yates, J. C. Hebden, A. P. Gibson, N. L. Everdell, D. T. Delpy, S. R. Arridge, M. Douek and W. Chicken, “Clinical results from a 32-channel time resolved system used to image the breast,” OSA Biomedical Topical Meetings, Miami WF18 (2004).

    [33] P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli and R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt. 9, 464–473 (2004).

    [34] B. Chance, M. T. Dait, C. Zhang, T. Hamaoka and F. Hagerman, “Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers,” Am. J. Physiol. 262, C766–C775 (1993).

    [35] J. Im, D. Nioka, B. Chance and K. W. Rundell, “Muscle oxygen desaturation is related to whole body VO2 during cross-country ski skating,” Int. J. Sports Med. 22, 356–360 (2001).

    [36] L. Szmedra, J. Im, S. Nioka, B. Chance and K.Rundell, “Hemoglobin/myoglobin oxygen desaturation during Alpine skiing,” Med. Sci. Sports Exerc. 33, 232–236 (2001).

    [37] http://www.nellcor.com/prod/List.aspx S1=POX.

    [38] G. A. Millikan, J. R. Pappenheimer, A. J. Rawson et al., “The continuous measurement of arterial saturation in man,” Am. J. Physiol. 133, 390 (1941).

    [39] G. Gratton, C. R. Brumback, B. A.Gordon, M. A. Pearson, K. A. Low and M. Fabiani, “Effects of measurement method, wavelength and source,” Neuroimage. 32, 1576–1590 (2006).

    [40] S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Ellermann and K. Ugurbil, “Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model,” Biophys. J. 64, 803–812 (1993).

    [41] B. Chance, S. Nioka, S. Sadi and C. Li, “Oxygenation and blood concentration changes in human subject prefrontal activation by anagram solutions,” Adv. Exp. Med. Biol. 510, 397–401 (2003).

    [42] M. Izzetoglu, K. Izzetoglu, S. Bunce, A. Ayaz, A. Devarai, B. Onaral and K. Pourrezaei, “Functional near-infrared neuroimag in neural systems and rehabilitation engineering,” IEEE Transactions 13, 153–159 (2005).

    [43] http://www.infrascanner.com/.

    [44] B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: A six year, two site study,” Acad. Radiol. 12, 925–33 (2005).

    [45] B. Chance, K. Kang, L. He, H. Liu and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sci. Instru. 67, 4324–4332 (1996).

    [46] J. M. Schmitt, A. Knuttel et al., “Interference of diffusive light waves,” J. Opt. Soc. Am. 9, 1832 (1992).

    [47] A. Knuttel, R. Barnes and J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum 32, 381–389 (1993).

    [48] J. J. Kelly, K. A. Kelly, C. H. Barlow and C. H. Ed, “Tissue temperature by nearinfrared spectroscopy. Optical tomography, photon migration and spectroscopy of tissue and model media,” SPIE 2389, 818–828 (1995).

    [49] M. Poe and R. W. Estabrook, “Kinetic studies of temperature changes and oxygen uptake in a differential calorimeter: The heat of oxidation of NADH and succinate,” Arch. Biochem. Biophys. 122, 204–211 (1967).

    BRITTON CHANCE, SHOKO NIOKA. HISTORY AND PRESENT STATE OF TRANSLATIONAL ELECTRO-OPTICAL APPLICATIONS TO MEDICINE[J]. Journal of Innovative Optical Health Sciences, 2008, 1(1): 1
    Download Citation