• Chinese Journal of Quantum Electronics
  • Vol. 32, Issue 2, 129 (2015)
Xiaoxiao LIN*, Yirong LIU, Lili YAN, Yanbo GAI, Changjin HU, Yang ZHANG, Xuejun GU, Teng HUANG, Weixiong ZHAO, Wei HUANG, and Weijun ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2015.02.001 Cite this Article
    LIN Xiaoxiao, LIU Yirong, YAN Lili, GAI Yanbo, HU Changjin, ZHANG Yang, GU Xuejun, HUANG Teng, ZHAO Weixiong, HUANG Wei, ZHANG Weijun. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 129 Copy Citation Text show less
    References

    [1] Criegee R, Wenner G. Die ozonisierung des 9,10-oktalins [J]. Justus Liebigs Ann. Chem., 1949, 564: 9-15.

    [2] Criegee R. Mechanism of ozonolysis [J]. Angew. Chem. Int. Ed. Engl., 1975, 14: 745-752.

    [3] Welz O, Savee J D, Osborn D L, et al. Direct kinetic measurements of Criegee intermediate (CH2 OO) formed by reaction of CH2 I with O2 [J]. Science, 2012, 335: 204-207.

    [4] Anglada J M, Aplincourt P, Bofill J M, et al. Atmospheric formation of OH radicals and H2 O2 from alkene ozonolysis under humid conditions [J]. Chem. Phys. Phys. Chem., 2002, 3: 215-221.

    [5] Harrison R M, Yin J, Tilling R M, et al. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: Overview of the PUMA consortium project [J]. Sci. Total Environ., 2006, 360: 5-25.

    [6] Gutbrod R, Schindler R N, Kraka E, et al. Formation of OH radicals in the gas phase ozonolysis of alkenes, the unexpected role of carbonyl oxides [J]. Chem. Phys. Lett., 1996, 252: 221-229.

    [7] Taatjes C A, Shallcross D E, Percival C J. Research frontiers in the chemistry of Criegee intermediates and tropospheric ozonolysis [J]. Phys. Chem. Chem. Phys., 2014, 16: 1704-18.

    [8] Ryzhkov A B, Ariya P A. Reactions of substituted Criegee biradical with water dimer [J]. Phys. Chem. Chem. Phys., 2004, 6: 5042-5050.

    [9] Anglada J M, Gonzalez J, Torrent-Sucarrat M. A theoretical study on the reaction of substituted carbonyl oxides with water [J]. Phys. Chem. Chem. Phys., 2011, 13: 13034-13045.

    [10] Vereecken L, Francisco J S. Theoretical studies of atmospheric reaction mechanisms in the troposphere [J]. Chem. Soc. Rev., 2012, 41: 6259-6293.

    [13] Aplincourt P, Anglada J M. Theoretical studies of the isoprene ozonolysis under tropospheric conditions. 2. Unimolecular and water-assisted decomposition of the α-hydroxy hydroperoxides [J]. J. Phys. Chem. A, 2003, 107: 5812-5820.

    [14] Bonn B, Schuster G, Moortgat G K. Influence of water vapor on the process of new particle formation during monoterpene ozonolysis [J]. J. Phys. Chem. A, 2002, 106: 2869-2881.

    [15] Bonn B, Schuster G, Moortgat G K. Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons [J]. Geophys. Res. Lett., 2003, 30: 1585.

    [16] Atkinson R, Arey J. Atmospheric degradation of volatile organic compounds [J]. Chem. Rev., 2003, 103: 4605-4638.

    [17] Li J Y, Ying Q, Yi B Q, et al. Role of stabilized Criegee intermediates in the formation of atmospheric sulfate in eastern United States [J]. Atmos. Environ., 2013, 79: 442-447.

    [18] Carlsson P T, Keunecke C, Krüger B C, et al. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene [J]. Phys. Chem. Chem. Phys., 2012, 14: 15637-15640.

    [19] Cox R A, Penkett S A. Oxidation of atmospheric SO2 by products of the ozone-olefin reaction [J]. Nature, 1971, 230: 321-322.

    [20] Cox R A, et al. Aerosol formation from sulphur dioxide in the presence of ozone and olefinic hydrocarbons [J]. J. Chem. Soc., Faraday Trans., 1972, 1(68): 1735-1753.

    [21] Calvert J G, Stockwell W R. Acid generation in the troposphere by gas-phase chemistry [J]. Environ. Sci. Technol., 1983, 17: 428A-443A.

    [22] Ouyang B, McLeod M W, Jones R L, et al. NO3 radical production from the reaction between the Criegee intermediate CH2 OO and NO2 [J]. Phys. Chem. Chem. Phys., 2013, 15: 17070-17075.

    [23] Taatjes C A, Welz O, Eskola A J, et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3 CHOO [J]. Science, 2013, 340: 177-180.

    [24] Su Y T, Huang Y H, et al. Infrared absorption spectrum of the simplest Criegee intermediate CH2 OO [J]. Science, 2013, 340: 174-176.

    [25] Sakamoto Y, Inomata S, Hirokawa J. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis [J]. J. Phys. Chem. A, 2013, 117: 12912-12921.

    [26] Vereecken L, Harder H, Novelli A. The reaction of Criegee intermediates with NO, RO2 , and SO2 , and their fate in the atmosphere [J]. Phys. Chem. Chem. Phys., 2012, 14: 14682-14695.

    [27] Kuwata K T, Valin L C, Converse A D. Quantum chemical and master equation studies of the methyl vinyl carbonyl oxides formed in isoprene ozonolysis [J]. J. Phys. Chem. A, 2005, 109: 10710-10725.

    [28] Long B, Tan X F, Long Z W, et al. Theoretical studies on reactions of the stabilized H2 COO with HO2 and the HO2 {\\mkern 1mu}…H2 O complex [J]. J. Phys. Chem. A, 2011, 115: 6559-6567.

    [29] Boyd A A, Canosa-Mas C E, King A D, et al. Use of a stopped-flow technique to measure the rate constants at room temperature for reactions between the nitrate radical and various organic species [J]. J. Chem. Soc., Faraday Trans., 1991, 87: 2913-2919.

    [30] Winterhalter R, Neeb P, Grossmann D, et al. Products and mechanism of the gas phase reaction of ozone with β-pinene [J]. J. Atmos. Chem., 2000, 35: 165-197.

    [31] Ahrens J, Carlsson P T, Hertl N, et al. Infrared detection of criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide [J]. Angew. Chem. Int. Ed. Engl., 2014, 53: 715-719.

    LIN Xiaoxiao, LIU Yirong, YAN Lili, GAI Yanbo, HU Changjin, ZHANG Yang, GU Xuejun, HUANG Teng, ZHAO Weixiong, HUANG Wei, ZHANG Weijun. Advances in atmospheric Criegee intermediates detection methods[J]. Chinese Journal of Quantum Electronics, 2015, 32(2): 129
    Download Citation