• Photonics Research
  • Vol. 11, Issue 9, 1592 (2023)
Zekun Shi, Baiwei Mao, Zhi Wang, and Yan-ge Liu*
Author Affiliations
  • Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
  • show less
    DOI: 10.1364/PRJ.494864 Cite this Article Set citation alerts
    Zekun Shi, Baiwei Mao, Zhi Wang, Yan-ge Liu. Accurate mode purity measurement of ring core fibers with large mode numbers from the intensity distribution only[J]. Photonics Research, 2023, 11(9): 1592 Copy Citation Text show less
    References

    [1] Z. Ma, P. Kristensen, S. Ramachandran. Scaling information pathways in optical fibers by topological confinement. Science, 380, 278-282(2023).

    [2] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [3] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [4] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [5] D. Pal, S. D. Gupta, N. Ghosh, A. Banerjee. Direct observation of the effects of spin dependent momentum of light in optical tweezers. APL Photonics, 5, 086106(2020).

    [6] Y. Jiang, H. Y. Yuan, Z.-X. Li, Z. Wang, H. W. Zhang, Y. Cao, P. Yan. Twisted magnon as a magnetic tweezer. Phys. Rev. Lett., 124, 217204(2020).

    [7] Z. Li, W. Liu, Z. Li, C. Tang, H. Cheng, J. Li, X. Chen, S. Chen, J. Tian. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev., 12, 1800164(2018).

    [8] T.-S. Yang, Z.-Q. Zhou, Y.-L. Hua, X. Liu, Z.-F. Li, P.-Y. Li, Y. Ma, C. Liu, P.-J. Liang, X. Li, Y.-X. Xiao, J. Hu, C.-F. Li, G.-C. Guo. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat. Commun., 9, 3407(2018).

    [9] B. J. Puttnam, G. Rademacher, R. S. Luís. Space-division multiplexing for optical fiber communications. Optica, 8, 1186-1203(2021).

    [10] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455-474(2013).

    [11] C. Caucheteur, J. Villatoro, J. Villatoro, F. Liu, F. Liu, M. Loyez, M. Loyez, T. Guo, J. Albert. Mode-division and spatial-division optical fiber sensors. Adv. Opt. Photonics, 14, 1-86(2022).

    [12] C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, L. A. Rusch. Design of a family of ring-core fibers for OAM transmission studies. Opt. Express, 23, 10553-10563(2015).

    [13] Z. Wang, Q. Lu, J. Tu, Q. Xiao, L. Shen, X. Lan, Z. Li, C. Yu, C. Lu. Design, fabrication, and characterization of a low-index center and trench-assisted 7-ring-core 5-mode-group fiber for dense space-division multiplexing. Opt. Express, 30, 650-663(2022).

    [14] J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu. Mode division multiplexing based on ring core optical fibers. IEEE J. Quantum Electron., 54, 0700118(2018).

    [15] J. Liu, J. Zhang, J. Liu, Z. Lin, Z. Li, Z. Lin, J. Zhang, C. Huang, S. Mo, L. Shen, S. Lin, Y. Chen, R. Gao, L. Zhang, X. Lan, X. Cai, Z. Li, S. Yu. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci. Appl., 11, 202(2022).

    [16] J. Zhang, J. Zhu, J. Liu, S. Mo, J. Zhang, Z. Lin, L. Shen, L. Zhang, J. Luo, J. Liu, S. Yu. Accurate mode-coupling characterization of low-crosstalk ring-core fibers using integral calculation based swept-wavelength interferometry measurement. J. Lightwave Technol., 39, 6479-6486(2021).

    [17] A. Sontag, M. A. Noyan, J. M. Kikkawa. High purity orbital angular momentum of light. Opt. Express, 30, 43513-43521(2022).

    [18] T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, X. Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [19] J. Fang, J. Li, A. Kong, Y. Xie, C. Lin, Z. Xie, T. Lei, X. Yuan. Optical orbital angular momentum multiplexing communication via inversely-designed multiphase plane light conversion. Photonics Res., 10, 2015-2023(2022).

    [20] W. Chang, M. Feng, B. Mao, P. Wang, Z. Wang, Y. Liu. All-fiber fourth-order OAM mode generation employing a long period fiber grating written by preset twist. J. Lightwave Technol., 40, 4804-4811(2022).

    [21] Y. Wu, J. Wen, M. Zhang, Y. Cao, W. Chen, X. Zhang, T. Yusufu, F. Pang, T. Wang. Low-loss and helical-phase-dependent selective excitation of high-order orbital angular momentum modes in a twisted ring-core fiber. Opt. Lett., 47, 4016-4019(2022).

    [22] G. Wu, S. Gao, J. Tu, L. Shen, Y. Feng, Q. Sui, W. Liu, Z. Li. Mode manipulation in a ring–core fiber for OAM monitoring and conversion. Nanophotonics, 11, 4889-4898(2022).

    [23] Q. Zhang, S. Rothe, N. Koukourakis, J. Czarske. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photonics, 7, 066104(2022).

    [24] S. Rothe, H. Radner, N. Koukourakis, J. W. Czarske. Transmission matrix measurement of multimode optical fibers by mode-selective excitation using one spatial light modulator. Appl. Sci., 9, 195(2019).

    [25] L. Fang, H. Wang, Y. Liang, H. Cao, J. Wang. Spin-orbit mapping of light. Phys. Rev. Lett., 127, 233901(2021).

    [26] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [27] S. Fu, S. Zhang, T. Wang, C. Gao. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt. Express, 24, 6240-6248(2016).

    [28] Y. Lv, Z. Shang, S. Fu, L. Huang, L. Gao, C. Gao. Sorting orbital angular momentum of photons through a multi-ring azimuthal-quadratic phase. Opt. Lett., 47, 5032-5035(2022).

    [29] Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, S. Yu. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [30] J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express, 16, 7233-7243(2008).

    [31] E. S. Manuylovich, V. V. Dvoyrin, S. K. Turitsyn. Fast mode decomposition in few-mode fibers. Nat. Commun., 11, 5507(2020).

    [32] Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127-10137(2019).

    [33] E. Manuylovich, E. Manuylovich, A. Donodin, S. Turitsyn, S. Turitsyn. Intensity-only-measurement mode decomposition in few-mode fibers. Opt. Express, 29, 36769-36783(2021).

    [34] M. Lyu, Z. Lin, G. Li, G. Situ. Fast modal decomposition for optical fibers using digital holography. Sci. Rep., 7, 6556(2017).

    [35] A. D’Errico, R. D’Amelio, B. Piccirillo, F. Cardano, L. Marrucci. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica, 4, 1350-1357(2017).

    [36] J. Zhang, Z. Lin, J. Liu, J. Liu, Z. Lin, S. Mo, S. Lin, L. Shen, L. Zhang, Y. Chen, X. Lan, S. Yu. SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre. Nanophotonics, 11, 873-884(2022).

    [37] Y. An, J. Li, L. Huang, L. Li, J. Leng, L. Yang, P. Zhou. Numerical mode decomposition for multimode fiber: from multi-variable optimization to deep learning. Opt. Fiber Technol., 52, 101960(2019).

    [38] J. Li, X. Zhang, Y. Zheng, F. Li, X. Shan, Z. Han, R. Zhu. Fast fiber mode decomposition with a lensless fiber-point-diffraction interferometer. Opt. Lett., 46, 2501-2504(2021).

    [39] N. K. Fontaine, R. Ryf, H. Chen, D. T. Neilson, K. Kim, J. Carpenter. Laguerre-Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [40] D. Lin, Y. Feng, Z. Ren, D. J. Richardson. The generation of femtosecond optical vortex beams with megawatt powers directly from a fiber based Mamyshev oscillator. Nanophotonics, 11, 847-854(2022).

    [41] A. Forbes. Advances in orbital angular momentum lasers. J. Lightwave Technol., 41, 2079-2086(2023).

    [42] J. Zhang, J. Liu, L. Shen, L. Zhang, J. Luo, J. Liu, S. Yu. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photonics Res., 8, 1236-1242(2020).

    [43] C. Shi, L. Shen, J. Zhang, J. Liu, L. Zhang, J. Luo, J. Liu, S. Yu. Ultra-low inter-mode-group crosstalk ring-core fiber optimized using neural networks and genetic algorithm. Optical Fiber Communication Conference (OFC), W1B.3(2020).

    [44] B. Mao, Y. Liu, H. Zhang, K. Yang, Y. Han, Z. Wang, Z. Li. Complex analysis between CV modes and OAM modes in fiber systems. Nanophotonics, 8, 271-285(2019).

    [45] H. Zhang, B. Mao, Y. Han, Z. Wang, Y. Yue, Y. Liu. Generation of orbital angular momentum modes using fiber systems. Appl. Sci., 9, 1033(2019).

    [46] T. Sauer. Numerical Analysis(2012).

    [47] B. Mao, Y. Liu, W. Chang, L. Chen, M. Feng, H. Guo, J. He, Z. Wang. Singularities splitting phenomenon for the superposition of hybrid orders structured lights and the corresponding interference discrimination method. Nanophotonics, 11, 1413-1426(2022).

    [48] R. Bruening, P. Gelszinnis, C. Schulze, D. Flamm, M. Duparre. Comparative analysis of numerical methods for the mode analysis of laser beams. Appl. Opt., 52, 7769-7777(2013).

    [49] Y. Wu, J. Wen, M. Zhang, J. Wen, W. Chen, X. Zhang, F. Pang, F. Tang, G. West, T. Wang. Low-noise-figure and high-purity 10 vortex modes amplifier based on configurable pump modes. Opt. Express, 30, 8248-8256(2022).

    [50] Q. Lu, J. Tu, Z. Wang, S. Gao, J. Zhou, Q. Xiao, L. Shen, X. Lan, W. Liu, Z. Li. Spin–orbit coupling suppressed high-capacity dual-step-index ring-core OAM fiber. Opt. Lett., 47, 1141-1144(2022).

    [51] K. Yang, Y. Liu, Z. Wang, Y. Li, Y. Han, H. Zhang, B. Mao. Triple-order orbital-angular-momentum modes generation based on single tilted fiber Bragg grating in a few-mode ring-core fiber. Opt. Fiber Technol., 55, 102155(2020).

    [52] B. Mao, Y. Liu, H. Zhang, K. Yang, M. Feng, Z. Wang, Z. Li. Expanded Jones complex space model to describe arbitrary higher-order spatial states in fiber. Nanophotonics, 8, 1757-1769(2019).

    Zekun Shi, Baiwei Mao, Zhi Wang, Yan-ge Liu. Accurate mode purity measurement of ring core fibers with large mode numbers from the intensity distribution only[J]. Photonics Research, 2023, 11(9): 1592
    Download Citation