• Photonics Research
  • Vol. 8, Issue 8, 1375 (2020)
Shuiqin Zheng1、2、3, Zhenkuan Chen1、3, Qinggang Lin1, Yi Cai1, Xiaowei Lu1, Yanxia Gao1、4, Shixiang Xu1、*, and Dianyuan Fan3
Author Affiliations
  • 1Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • 3SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
  • 4e-mail: gyx@szu.edu.cn
  • show less
    DOI: 10.1364/PRJ.390963 Cite this Article Set citation alerts
    Shuiqin Zheng, Zhenkuan Chen, Qinggang Lin, Yi Cai, Xiaowei Lu, Yanxia Gao, Shixiang Xu, Dianyuan Fan. High-gain amplification for femtosecond optical vortex with mode-control regenerative cavity[J]. Photonics Research, 2020, 8(8): 1375 Copy Citation Text show less
    References

    [1] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [3] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photon. Rev., 2, 299-313(2008).

    [4] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [5] J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, M. Tur. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes. IEEE Photonic Society 24th Annual Meeting, 58, 587-588(2011).

    [6] T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, X. Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [7] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14-B28(2016).

    [8] E. Stegenburgs, A. Bertoncini, A. Trichili, M. S. Alias, T. K. Ng, M. Alouini, C. Liberale, B. S. Ooi. Near-infrared OAM communication using 3D-printed microscale spiral phase plates. IEEE Commun. Mag., 57, 65-69(2019).

    [9] J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu. Optical-vortex laser ablation. Opt. Express, 18, 2144-2151(2010).

    [10] T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita. Metal microneedle fabrication using twisted light with spin. Opt. Express, 18, 17967-17973(2010).

    [11] B. Wetzel, C. Xie, P. Lacourt, J. M. Dudley, F. Courvoisier. Femtosecond laser fabrication of micro and nano-disks in single layer graphene using vortex Bessel beams. Appl. Phys. Lett., 103, 241111(2013).

    [12] F. Courvoisier, R. Stoian, A. Couairon. Ultrafast laser micro- and nano-processing with nondiffracting and curved beams. Opt. Laser Technol., 80, 125-137(2016).

    [13] S. R. Lee, J. Kim, S. Lee, Y. Jung, J. K. Kim, K. Oh. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles. Opt. Express, 18, 25299-25305(2010).

    [14] C. Liu, Z. Guo, Y. Li, X. Wang, S. Qu. Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers. J. Opt., 17, 35402(2015).

    [15] N. Eckerskorn, R. Bowman, R. A. Kirian, S. Awel, M. Wiedorn, J. Küpper, M. J. Padgett, H. N. Chapman, A. V. Rode. Optically induced forces imposed in an optical funnel on a stream of particles in air or vacuum. Phys. Rev. Appl., 4, 064001(2015).

    [16] P. Chen, B. Wei, W. Ji, S. Ge, W. Hu, F. Xu, V. Chigrinov, Y. Lu. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photon. Res., 3, 133-139(2015).

    [17] J. Xin, K. Dai, L. Zhong, Q. Na, C. Gao. Generation of optical vortices by using spiral phase plates made of polarization dependent devices. Opt. Lett., 39, 1984-1987(2014).

    [18] Y. Tokizane, K. Oka, R. Morita. Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion. Opt. Express, 17, 14517-14525(2009).

    [19] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara. Generation of high-quality higher-order Laguerre–Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. Am. A, 25, 1642-1651(2008).

    [20] K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, Z. Y. Lin. Generation of femtosecond optical vortices using a single refractive optical element. Appl. Phys. Lett., 88, 91103(2006).

    [21] M. Okida, T. Omatsu, M. Itoh, T. Yatagai. Direct generation of high power Laguerre–Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser. Opt. Express, 15, 7616-7622(2007).

    [22] D. J. Kim, J. W. Kim. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett., 40, 399-402(2015).

    [23] Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, J. Wang. Direct generation of optical vortex pulses. Appl. Phys. Lett., 101, 31113(2012).

    [24] I. A. Litvin, S. Ngcobo, D. Naidoo, K. Ait-Ameur, A. Forbes. Doughnut laser beam as an incoherent superposition of two petal beams. Opt. Lett., 39, 704-707(2014).

    [25] D. Naidoo, K. Aït-Ameur, M. Brunel, A. Forbes. Intra-cavity generation of superpositions of Laguerre–Gaussian beams. Appl. Phys. B, 106, 683-690(2012).

    [26] D. Pengel, S. Kerbstadt, D. Johannmeyer, L. Englert, T. Bayer, M. Wollenhaupt. Electron vortices in femtosecond multiphoton ionization. Phys. Rev. Lett., 118, 53003(2017).

    [27] A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, F. Quéré. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440-443(2017).

    [28] D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, G. De Ninno. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [29] L. Rego, K. M. Dorney, N. J. Brooks, Q. L. Nguyen, C. Liao, J. San Román, D. E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. C. Kapteyn, M. M. Murnane, C. Hernández-García. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [30] Y. Lin, Y. Nabekawa, K. Midorikawa. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser. Appl. Phys. B, 122, 280(2016).

    [31] K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schatzel, H. Walther. Vortices in femtosecond laser fields. Opt. Lett, 29, 1942-1944(2004).

    [32] Z. Guo, S. Qu, S. Liu. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses. Opt. Commun., 273, 286-289(2007).

    [33] A. Schwarz, W. Rudolph. Dispersion-compensating beam shaper for femtosecond optical vortex beams. Opt. Lett., 33, 2970-2972(2008).

    [34] I. G. Mariyenko, J. Strohaber, C. J. Uiterwaal. Creation of optical vortices in femtosecond pulses. Opt. Express, 13, 7599-7608(2005).

    [35] Ó. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, L. Bañares. Generation of femtosecond paraxial beams with arbitrary spatial distribution. Opt. Lett., 35, 652-654(2010).

    [36] Y. Zhang, H. Yu, H. Zhang, X. Xu, J. Xu, J. Wang. Self-mode-locked Laguerre–Gaussian beam with staged topological charge by thermal-optical field coupling. Opt. Express, 24, 5514-5522(2016).

    [37] N. Li, J. Huang, B. Xu, Y. Cai, J. Lu, L. Zhan, Z. Luo, H. Xu, Z. Cai, W. Cai. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr:LiYF4 visible laser. Photon. Res., 7, 1209-1213(2019).

    [38] A. Rundquist, C. Durfee, Z. Chang, G. Taft, E. Zeek, S. Backus, M. M. Murnane, H. C. Kapteyn, I. Christov, V. Stoev. Ultrafast laser and amplifier sources. Appl. Phys. B, 65, 161-174(1997).

    [39] W. S. Brocklesby. Progress in high average power ultrafast lasers. Eur. Phys. J. Spec. Top., 224, 2529-2543(2015).

    [40] S. Backus, C. G. Durfee, M. M. Murnane, H. C. Kapteyn. High power ultrafast lasers. Rev. Sci. Instrum., 69, 1207-1223(1998).

    [41] D. Strickl, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 56, 219-221(1985).

    [42] J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, J. Limpert. High average power near-infrared few-cycle lasers. Laser Photon. Rev., 11, 1700043(2017).

    [43] X. Chen, C. Chang, Z. Lin, P. Ding, J. Pu. High-energy nanosecond optical vortex output from Nd:YAG amplifiers. IEEE Photon. Technol. Lett., 28, 1271-1274(2016).

    [44] K. Yamane, Y. Toda, R. Morita. Ultrashort optical-vortex pulse generation in few-cycle regime. Opt. Express, 20, 18986-18993(2012).

    [45] A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, A. Stabinis. Conversion of topological charge of optical vortices in a parametric frequency converter. Opt. Commun., 140, 273-276(1997).

    [46] J. Qian, Y. Peng, Y. Li, P. Wang, B. Shao, Z. Liu, Y. Leng, R. Li. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photon. Res., 8, 421-425(2020).

    [47] S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, J. Li. Vortex Ti:sapphire laser by using an intracavity spot-defect spatial filter. Opt. Laser Technol., 96, 76-80(2017).

    [48] D. J. Kim, J. W. Kim. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser. Opt. Lett., 40, 399-402(2015).

    [49] J. W. Kim, W. A. Clarkson. Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Opt. Commun., 296, 109-112(2013).

    [50] M. Wei, W. Shiao, Y. Lin. Adjustable generation of bottle and hollow beams using an axicon. Opt. Commun., 248, 7-14(2005).

    [51] A. Hu, J. Lei, P. Chen, Y. Wang, S. Li. Numerical investigation on the generation of high-order Laguerre–Gaussian beams in end-pumped solid-state lasers by introducing loss control. Appl. Opt., 53, 7845-7853(2014).

    [52] N. Zhang, X. C. Yuan, R. E. Burge. Extending the detection range of optical vortices by Dammann vortex gratings. Opt. Lett., 35, 3495-3497(2010).

    [53] V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, Y. S. Kivshar. Determination of topological charges of polychromatic optical vortices. Opt. Express, 17, 23374-23379(2009).

    Shuiqin Zheng, Zhenkuan Chen, Qinggang Lin, Yi Cai, Xiaowei Lu, Yanxia Gao, Shixiang Xu, Dianyuan Fan. High-gain amplification for femtosecond optical vortex with mode-control regenerative cavity[J]. Photonics Research, 2020, 8(8): 1375
    Download Citation