• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201058 (2020)
Yihan Pi, Chunze Wang, Youjian Song*, and Minglie Hu
Author Affiliations
  • Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/IRLA20201058 Cite this Article
    Yihan Pi, Chunze Wang, Youjian Song, Minglie Hu. Ultra-low timing jitter femtosecond laser technology (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201058 Copy Citation Text show less
    References

    [1] H Zewail Ahmed. Femtochemistry: atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A, 104, 5660-5694(2000).

    [2] Zhu Xin, L Kalcic Christine, Winkler Nelson. Applications of femtochemistry to proteomic and metabolomic analysis. The Journal of Physical Chemistry A, 114, 10380-10387(2010).

    [3] Petek Hrvoje. Single-molecule femtochemistry: molecular imaging at the space-time limit. Acs Nano, 8, 5-13(2014).

    [4] Saalmann Ulf, Rost Jan-Michael. Ionization of clusters in intense laser pulses through collective electron dynamics. Physical Review Letters, 91, 223401(2003).

    [5] J Psikal, V T Tikhonchuk, J Limpouch. Ion acceleration by femtosecond laser pulses in small multispecies targets. Physics of Plasmas, 15, 053102(2008).

    [6] R Gattass Rafael, Mazur Eric. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2, 219-225(2008).

    [7] Khilo Anatol, J Spector Steven, E Grein Matthew. Photonic ADC: overcoming the bottleneck of electronic jitter. Optics Express, 20, 4454-4469(2012).

    [8] S Schulz, I Grguras, C Behrens. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nature Communication, 6, 5938(2015).

    [9] Walbran Matthew, Gliserin Alexander, Jung Kwangyun. 5-femtosecond laserelectron synchronization for pump-probe crystallography and diffraction. Physical Review Applied, 4, 044013(2015).

    [10] A Bartels, S A Diddams, C W Oates. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Optics Letters, 30, 667-669(2005).

    [11] J A Cox, W P Putnam, A Sell. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Optics Letters, 37, 3579-3581(2012).

    [12] Ghelfi Paolo, Laghezza Francesco, Scotti Filippo. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).

    [13] Xin Ming, Şafak Kemal, X Kärtner Franz. Ultra-precise timing and synchronization for large-scale scientific instruments. Optica, 5, 1564-1578(2018).

    [14] J Kim, F X Kärtner. Attosecond-precision ultrafast photonics. Laser and Photonics Reviews, 4, 432-456(2010).

    [15] Donald Barrett Sullivan, David W Allan, David A Howe, et al.. acterization of Clocks Oscillats [M]. US: Department of Commerce, National Institute of Stards Technology, 1990.

    [16] Montress G K, Parker T E, Loboda M J. Residual phase noise measurements of VHF, UHF, microwave components [C]Proceedings of the 43rd Annual Symposium on IEEE, 1989, 41(5): 664679.

    [17] vonder Linde D. Characterization of the noise in continuously operating mode-locked lasers. Applied Physics B, 39, 201-217(1986).

    [18] Chunmei Ouyang, Ping Shum, Honghai Wang. Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber. Optics Letters, 35, 2320-2322(2010).

    [19] Scott R P, Langrock C, Kolner B H. Highdynamicrange laser amplitude phase noise measurement techniques [C] IEEE Journal of ed Topics in Quantum Electronics, 2001, 7(4): 641655.

    [20] Song Youjian, Kim Chur, Jung Kwangyun. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime. Optics Express, 19, 14518-14525(2011).

    [21] Shaofu Xu, Xiuting Zou, Bowen Ma. Deep-learning-powered photonic analog-to-digital conversion. Light: Science & Applications, 8, 66(2019).

    [22] J Benedick Andrew, G Fujimoto James, X. Kartner Franz. Optical flywheels with attosecond jitter. Nature Photonics, 6, 97-100(2012).

    [23] Qin Peng, Song Youjian, Kim Hyoji. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering. Optics Express, 22, 28276-28283(2014).

    [24] Chen Wei, Song Youjian, Jung Kwangyun. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser. Optics Express, 24, 1347-1357(2016).

    [25] D Hou, C-C Lee, Z Yang. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique. Optics Letters, 40, 2985-2988(2015).

    [26] Keun Kim Tae, Song Youjian, Jung Kwangyun. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers. Optics Letters, 36, 4443-4445(2011).

    [27] Jung Kwangyun, Kim Jungwon. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave. Scientific Reports, 5, 16250(2015).

    [28] Haochen Tian, Wenkai Yang, Kwon Dohyeon. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Optics Express, 28, 9232-9243(2020).

    [29] A Bartels, R Cerna, C Kistner. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Review of Scientific Instruments, 78, 035107(2007).

    [30] Haosen Shi, Youjian Song, JiaHe Yu. Quantum-limited timing jitter characterization of mode-locked lasers by asynchronous optical sampling. Optics Express, 25, 10-19(2017).

    [31] Duo Li, Demirbas Umit, Benedick Andrew. Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers. Optics Express, 20, 23422-23435(2012).

    [32] E Portuondo-Campa, R Paschotta, S Lecomte. Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength. Optics Letters, 38, 2650-2653(2013).

    [33] Kim Jungwon, Chen Jeff, Cox Jonathan. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers. Optics Letters, 32, 3519-3521(2007).

    [34] N Kuse, J Jiang, C-C Lee. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Optics Express, 24, 3095-3102(2016).

    [35] Chen Jian, W Sickler Jason, Fendel Peter. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication. Optics Letters, 33, 959-961(2008).

    [36] Yang Heewon, Kim Hyoji, Shin Junho. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser. Optics Letters, 39, 56-59(2014).

    [37] Yan Wang, Haochen Tian, Yuxuan Ma. Timing jitter of high-repetition-rate mode-locked fiber lasers. Optics Letters, 43, 4382-4385(2018).

    [38] Yan Wang, Haochen Tian, Dong Hou. Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers. Optics Express, 27, 11273-11280(2019).

    [39] Song Jiazheng, Wang Hushan, Huang Xinning. Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics, 58, 1733-1738(2019).

    [40] Hou Lianping, Haji Mohsin, Akbar Jehan. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters, 36, 966-968(2011).

    [41] Asghar Haroon, Wei Wei, Kumar Pramod. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback. Optics Express, 26, 4581-4592(2018).

    [42] Songtao Liu, Komljenovic Tin, Srinivasan Sudharsanan. Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback. Optics Express, 26, 9714-9723(2018).

    [43] Jeong Dongin, Kwon Dohyeon, Jeon Igju. Ultralow jitter silica microcomb. Optica, 7, 1108-1111(2020).

    [44] M Pang, W He, X Jiang. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nature Photonics, 10, 454-458(2016).

    [45] Haosen Shi, Youjian Song, Chingyue Wang. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule. Optics Letters, 43, 1623-1626(2018).

    [46] Jungwon Kim, Youjian Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Advances in Optics and Photonics, 8, 465-540(2016).

    [47] Chen Jian, W Sickler Jason, P Ippen Erich. High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. Optics Letters, 32, 1566-1568(2007).

    [48] Jian Chen, Jason Sickler, Hyunil Byun, et al. Fundamentally modelocked 3 GHz femtosecond erbium fiber laser [C] Ultrafast Phenomena XVI: Proceedings of the 16th International Conference, 2009: 732–734.

    [49] Li Xing, Zou Weiwen, Wu Kan, et al., Timingjitter reduction by use of a spectral filter in a broadb femtosecond fiber laser [C]IEEE Photonics Technology Letters, 2010,27(8): 911914.

    [50] Byun Hyunil, Y Sander Michelle, Motamedi Ali. Compact, stable 1 GHz femtosecond Er-doped fiber lasers. Applied Optics, 49, 5577-5582(2010).

    [51] Kim Chur, Bae Sangho, Kieu Khanh. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. Optics Express, 21, 26533-26541(2013).

    [52] Wu Kan, Zhang Xiaoyan, Wang Jun. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber. Optics Letters, 40, 1374-1377(2015).

    [53] Jung Kwangyun, Kim Jungwon. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency. Optics Letters, 40, 316-319(2015).

    [54] Shin Junho, Jung Kwangyun, Song Youjian. Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering. Optics Express, 23, 22898-22906(2015).

    [55] Kim Dohyun, Kwon Dohyeon, Lee Bongwan. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler. Optics Letters, 44, 1068-1071(2019).

    [56] Chengying Bao, Changxi Yang. Harmonic mode-locking in a Tm-doped fiber laser: characterization of its timing jitter and ultralong starting dynamics. Optics Communications, 356, 463-467(2015).

    [57] Ahmet E Akosman, Michelle Y Ser. Low noise, modelocked 253 MHz TmHo fiber laser with ce pumping at 790 nm [C]IEEE Photonics Technology Letters, 2016, 28(17): 18781881.

    [58] Huihui Cheng, Wenlong Wang, Yi Zhou. High-repetition-rate ultrafast fiber lasers. Optics Express, 26, 16411-16421(2018).

    [59] Bagnell Kristina, Klee Anthony, J Delfyett Peter. Demonstration of a highly stable 10 GHz optical frequency comb with low timing jitter from a SCOWA-based harmonically mode-locked nested cavity laser. Optics Letters, 43, 2396-2399(2018).

    [60] P Emma, R Akre, J Arthur. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4, 641-647(2010).

    [61] M Altarelli. The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269, 2845-2849(2011).

    [62] J Milne. Thomas Schietinger Christopher, Aiba Masamitsu. The Swiss X-ray free electron laser. Applied Sciences, 7, 720(2017).

    [63] Zhirong Huang, Lindau Ingolf. SACLA hard-X-ray compact FEL. Nature Photonics, 6, 505-506(2012).

    [64] Zhentang Zhao, Dong Wang, Qiang Gu. SXFEL: a soft X-ray free electron laser in China. Synchrotron Radiation News, 3, 29-33(2017).

    [65] Zhentang Zhao, Dong Wang, Lixin Yin. Shanghai soft X-ray freeelectron laser facility. Chinese Journal of Lasers, 46, 0100004(2019).

    [66] Prat Eduard, Reiche Sven. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Physical Review Letters, 114, 244801(2015).

    [67] F Calegari, D Ayuso, A Trabattoni. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science, 346, 336-339(2014).

    [68] H Öström, H Öberg, H Xin. Probing the transition state region in catalytic CO oxidation on Ru. Science, 347, 978-982(2015).

    [69] Şafak K, Cheng H P H, Dai A, et al. Singlemode fiber based pulsedoptical timing link with fewfemtosecond precision in SwissFEL [C]Conference on Lasers ElectroOptics, 2019: JTh2A.100.

    [70] Xin Ming, Şafak Kemal, Y Peng Michael. One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link. Optics Express, 22, 14904-14912(2014).

    [71] C Valley George. Photonic analog-to-digital converters. Optics Express, 15, 1955-1982(2007).

    [72] Kim Jungwon, J Park Matthew, H Perrott Michael. Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution. Optics Express, 16, 16509-16515(2008).

    [73] Jin Jonghan. Dimensional metrology using the optical comb of a mode-locked laser. Measurement Science and Technology, 27, 022001(2016).

    [74] I Coddington, W C Swann, L Nenadovic. Rapid and precise absolute distance measurements at long range. Nature Photonics, 3, 351-356(2009).

    [75] Hongyuan Zhang, Haoyun Wei, Xuejian Wu. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Optics Express, 22, 6597-6604(2014).

    [76] Haosen Shi, Youjian Song, Fei Liang. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Optics Express, 23, 14057-14069(2015).

    [77] Yanxing Ma, Xiaolin Wang, Jinyong Leng. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique. Optics Letters, 36, 951-953(2011).

    [78] Zejin Liu, Pengfei Ma, Rongtao Su. High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]. Journal of the Optical Society of America B, 34, A7-A14(2017).

    [79] K Shelton Robert, Ma Long-Sheng, C Kapteyn Henry. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science, 17, 1286-1289(2001).

    [80] Manzoni Cristian, D Mücke Oliver, Cirmi Giovanni. Coherent pulse synthesis: towards sub‐cycle optical waveforms. Laser & Photonics Reviews, 9, 129-171(2012).

    [81] J A Cox, W P Putnam, A Sell. Pulse synthesis in the single-cycle regime from independent mode-locked lasers using attosecond-precision feedback. Optical Letters, 37, 3579-3581(2012).

    [82] Haochen Tian, Youjian Song, Fei Meng. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers. Optical Letters, 41, 5142-5145(2016).

    [83] Aichen Ge, Bowen Liu, Wei Chen. Generation of few-cycle laser pulses by coherent synthesis based on a femtosecond Yb-doped fiber laser amplification system. Chinese Optics Letters, 17, 041403(2019).

    [84] P Trocha, M Karpov, D Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [85] Suh Myoung-Gyun, J Vahala Kerry. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    Yihan Pi, Chunze Wang, Youjian Song, Minglie Hu. Ultra-low timing jitter femtosecond laser technology (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201058
    Download Citation