• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 1, 57 (2021)
Song YU1、2、*, Mingqiang BAI1、2, Qian TANG1、2, and Zhiwen MO1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.01.009 Cite this Article
    YU Song, BAI Mingqiang, TANG Qian, MO Zhiwen. Controlled quantum secure direct communication protocol based on three-particle GHZ-like state[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 57 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984: 175-179.

    [2] Bostrm K, Felbinger T. Deterministic secure direct communication using entanglement[J]. Physical Review Letters, 2002, 89(18): 1-4.

    [3] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Physical Review A, 2003, 68(4): 042317.

    [4] Deng F G, Long G L. Secure direct communication with a quantum one-time pad[J]. Physical Review, 2004, 69(5): 052319.

    [5] Lucamarini M, Mancini S. Secure deterministic communication without entanglement[J]. Physical Review Letters, 2005, 94: 140501.

    [6] Huang W, Wen Q Y, Jia H Y, et al. Fault tolerant quantum secure direct communication with quantum encryption against collective noise[J]. Chinese Physics B, 2012, 21(10): 100308.

    [7] Wu D, Lv H J, Xie G J. Robust anti-collective noise quantum secure direct dialogue using logical Bell states[J]. International Journal of Theoretical Physics, 2016, 55(1): 457-469.

    [8] Qi R Y, Sun Z, Lin Z S, et al. Implementation and security analysis of practical quantum secure direct communication[J]. Light Science & Applications, 2019, 8: 22.

    [9] Li L L, Li J, Li C Y, et al. The security analysis of quantum B92 protocolin collective-rotation noise channel[J]. International Journal of Theoretical Physics, 2019, 58(4): 1326-1336.

    [10] An Nguyen Ba. Quantum dialogue[J]. Physics Letters A, 2004, 328(1): 6-10.

    [11] Shi G F, Xi X Q, Hu M L, et al. Quantum secure dialogue by using single photons[J]. Optics Communications, 2010, 283(9): 1984-1986.

    [12] Luo Y P, Lin C Y, Tzonelih H. Efficient quantum dialogue using single photons[J]. Quantum Information Processing, 2014, 13(11): 2451-2461.

    [13] Shukla C, Thapliyal K, Pathak A. Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue[J]. Quantum Information Processing, 2017, 16(12): 295.

    [14] Ye T Y, Ye C Q. Semi-quantum dialogue based on single photons[J]. International Journal of Theoretical Physics, 2018, 57(5): 1440-1454.

    [15] Lee H, Lim J, Yang H J. Quantum direct communication with authentication[J]. Physical Review A, 2006, 73(4): 543.

    [16] Weng P F, Chen H, Cai X X, et al. High-dimensional quantum secure direct communication using W state[J]. Laser Magazine, 2017, 38(6): 21-24.

    [17] Zhao X L, Li J L, Niu P H, et al. Two-step quantum secure direct communication scheme with frequency coding[J]. Chinese Physics B, 2017, 26(3): 1-4.

    [18] Gao T, Yan F L, Wang Z X. Controlled quantum teleportation and secure direct communication[J]. Chinese Physics, 2005, 14(5): 893-897.

    [19] Shen D S, Ma W P, Wang M L, et al. Improvement of a controlled quantum secure direct communication protocol[J]. Modern Physics Letters B, 2014, 28(15): 1450121.

    [20] Dong L, Xin X M, Gao Y J, et al. Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement[J]. Optics Communications, 2011, 284(3): 905-908.

    [21] Shima H, Monireh H. Efficient controlled quantum secure direct communication based on GHZ-like states[J]. Quantum Information Processing, 2015, 14(2): 739-753.

    [22] Zhang M L, Liu Y H, Nie M. An efficient direct communication protocol for controlled quantum security[J]. Chinese Journal of Quantum Electronics, 2018, 35(3): 320-325.

    [23] Kuang C, Zheng X Y. Controlled quantum secure direct communication protocol based on GHZ like state[J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 714-718.

    [24] Yu S. Research on QSDC Protocol Based on Encryption Operation[D]. Chengdu: Sichuan Normal University, 2020.

    [25] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.

    [26] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046.

    [27] Chen J P, Zhang C, Liu Y, et al. Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 2020, 124(7): 070501.

    [28] Wang C, Song X T, Yin Z Q, et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2015, 115(16): 160502.

    [29] Wang C, Yin Z Q, Wang S, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances[J]. Optica, 2017, 4(9): 1016-1023.

    [30] Cabello A. Quantum key distribution in the Holevo limit[J]. Physical Review Letters, 2000, 85(1): 5635-5638.

    [31] Gao F, Guo F Z, Wen Q Y, et al. Efficiency comparison of different detection strategies in Ping-pong protocol[J]. Science in China Series G: Astronomy in Physics and Mechanics, 2009, 2: 161-166.

    YU Song, BAI Mingqiang, TANG Qian, MO Zhiwen. Controlled quantum secure direct communication protocol based on three-particle GHZ-like state[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 57
    Download Citation