• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 657 (2018)
CHEN Jing-Yuan1、2, LIN Zhong-Xi1, LIN Qi1、2, XU Yu-Lan1、2, and SU Hui1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.003 Cite this Article
    CHEN Jing-Yuan, LIN Zhong-Xi, LIN Qi, XU Yu-Lan, SU Hui. Numerical analysis of high radiation intensity dipole antenna arrays with terahertz chokes[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 657 Copy Citation Text show less
    References

    [1] Lee Y S. Principles of terahertz science and technology[M]. New York: Springer US, 2009.

    [2] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs [J]. Semiconductor Science and Technology, 2005, 20(7):S266-S280.

    [3] Jarrahi M. Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators [J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(3):391-397.

    [4] Brown E R, Mcintosh K A, Nichols K B, et al. Photomixing up to 38 Thz in low-temperature-grown GaAs [J]. Applied Physics Letters, 1995, 66(3):285-287.

    [5] Matsuura S, Ito H. Generation of CW terahertz radiation with photomixing[M]. Berlin Heidelberg: Springer, 2005:157-202.

    [6] Kamran E, Thomas K-O, Koch M. Numerical simulation of photoconductive dipole antennas: the effect of the dc bias striplines[C]. In 16th International Symposium On Space Terahertz Technology, 2005:305-308.

    [7] Yang S Y, Cho C S, Lee J W, et al. Design of sub-THz log-periodic antenna for high input impedance[C]. In International Conference on Infrared, Millimeter, And Terahertz Waves, 2009: 1-2.

    [8] Nguyen T K, Han H, Park I. Full-wavelength dipole antenna on a hybrid GaAs membrane and Si lens for a terahertz photomixer [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(3):333-347.

    [9] Han K, Nguyen T K, Park I, et al. Terahertz yagi-uda antenna for high input resistance [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 31(4):441-454.

    [10] Nguyen T K, Han H, Park I. Numerical study of a full-wavelength dipole antenna on a GaAs membrane structure at terahertz frequency [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(6):763-777.

    [11] Yin W, Kennedy K, Sarma J, et al. A photomixer driven terahertz dipole antenna with high input resistance and gain [J]. Progress In Electromagnetics Research M, 2015, 44:13-20.

    [12] Awad M, Nagel M, Kurz H, et al. Characterization of low temperature GaAs antenna array terahertz emitters [J]. Applied Physics Letters, 2007, 91(18):181124.

    [14] Berry C W, Hashemi M R, Jarrahi M. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas [J]. Applied Physics Letters, 2014, 104(8):081122.

    [15] Duffy S M, Verghese S, Mcintosh A, et al. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power [J]. IEEE Transactions On Microwave Theory And Techniques, 2001, 49(6):1032-1038.

    [17] Khiabani N. Modelling, design and characterisation of terahertz photoconductive antennas[J]. Computers & Mathematics with Applications, 2013, 64(6):1567-1574.

    [18] Filipovic D F, Gearhart S S, Rebeiz G M, et al. Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses[J]. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(10):1738-1749.

    CHEN Jing-Yuan, LIN Zhong-Xi, LIN Qi, XU Yu-Lan, SU Hui. Numerical analysis of high radiation intensity dipole antenna arrays with terahertz chokes[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 657
    Download Citation