[1] Eaglesham D J, Cerullo M. Dislocation-free transki-Krastanow growth of Ge on Si(100)[J]. Phys.Rev.Lett., 1990, 64(16): 19431946.
[2] Ross F M, Tromp R M, Reuter M C. Transition states between pyramids and domes during Ge/Si island growth[J]. Science, 1999, 286: 19311934.
[3] Voigtlander B. Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth[J]. Surface Science Reports, 2001, 43: 127254.
[4] People R. Indirect band gap of coherently strained GexSi1-x bulk alloys on〈001〉silicon substrates[J]. Phys Rev, 1985, B32:1405.
[5] Lang D V, People R, Bean J C, et al. Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures[J]. Appl Phys Lett, 1985, 47: 1333.
[6] Huang C J, Zuo Y H, Li D Z, et al. Shape Evolution of Ge/Si(001) Island Induced by Strain-driven Alloying[J]. Appl Phys lett, 2001, 78: 38813883.
[7] Kaneko T, Onisawa K I, Wakagi M, et al. Crystalline fraction of microcrystalline silicon films prepared by plasma enhanced chemical vap or deposition pulsed silane flow[J]. Jpn J App1 Phys, 1993, 32: 49074911.
[8] Sasaki K, Nagai H, Hata T. Epitaxial growth properties of Si and SiGe films prepared by ion beam sputtering process[J]. Vacuum, 2000, 59: 397402.
[9] Wang X, Jiang Z M, Zhu H J, et al. Germanium dots with highly uniform size distribution grown on Si (100) substrate by molecular beam epitaxy[J]. Appl Phys Lett, 1997, 71: 3543.
[10] Bottani C E, Mantini C, Milani P, et al. Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots[J]. Appl.Phys Lett, 1996, 69: 2409.
[11] Kanakaraju S, Sood A K In situ Raman monitoring of ultrathin Ge films[J]. Appl Phys, 1998, 84: 5756.
[12] McVay G L, DuCharme A R. Diffusion of Ge in SiGe alloys[J]. Phys Rev.B, 1974, 9: 627.
[13] Chung H C, Chu W H, Liu C P. Electron transport through individual Ge self-assembled quantum dots on Si[J]. Appl.Phys.Lett. 2006, 89: 082105.