• Photonics Research
  • Vol. 6, Issue 12, 1102 (2018)
Yunsheng Guo1、*, Saiyu Liu1, Ke Bi2, Ming Lei2, and Ji Zhou3
Author Affiliations
  • 1Department of Applied Physics, Inner Mongolia University of Science & Technology, Baotou 014010, China
  • 2State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.6.001102 Cite this Article Set citation alerts
    Yunsheng Guo, Saiyu Liu, Ke Bi, Ming Lei, Ji Zhou. Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture[J]. Photonics Research, 2018, 6(12): 1102 Copy Citation Text show less
    References

    [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [2] N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso. Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics, 2, 564-570(2008).

    [3] J. A. Matteo, L. Hesselink. Fractal extensions of near-field aperture shapes for enhanced transmission and resolution. Opt. Express, 13, 636-647(2005).

    [4] F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, L. Martin-Moreno. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett., 90, 213901(2003).

    [5] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, T. W. Ebbesen. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett., 92, 107401(2004).

    [6] R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K. L. Kavanagh. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett., 92, 037401(2004).

    [7] K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, L. Kuipers. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett., 92, 183901(2004).

    [8] F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers. Light passing through subwavelength apertures. Rev. Mod. Phys., 82, 729-787(2010).

    [9] K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, E. Ozbay. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys. Rev. Lett., 102, 013904(2009).

    [10] A. B. Khanikaev, S. H. Mousavi, G. Shvets, Y. S. Kivshar. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett., 105, 126804(2010).

    [11] K. B. Alici, E. Ozbay. Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole. Phys. Status Solidi, 4, 286-288(2010).

    [12] Z. C. Ruan, M. Qiu. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys. Rev. Lett., 96, 233901(2006).

    [13] R. Marques, J. Martel, F. Mesa, F. Medina. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides. Phys. Rev. Lett., 89, 183901(2002).

    [14] L. Zhou, C. P. Huang, S. Wu, X. G. Yin, Y. M. Wang, Q. J. Wang, Y. Y. Zhu. Enhanced optical transmission through metal-dielectric multilayer gratings. Appl. Phys. Lett., 97, 011905(2010).

    [15] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889-898(2014).

    [16] R. Tsu, M. A. Fiddy. Generalization of the effects of high Q for metamaterials. Photon. Res., 1, 77-87(2013).

    [17] K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, Y. S. Kivshar. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photon., 3, 514-519(2016).

    [18] D. R. Smith, J. B. Pendry, M. C. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [19] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 1, 41-48(2007).

    [20] Y. M. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [21] K. Im, J. H. Kang, Q. H. Park. Universal impedance matching and the perfect transmission of white light. Nat. Photonics, 12, 143-149(2018).

    [22] X. Y. Liu, K. B. Fan, I. V. Shadrivov, W. J. Padilla. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express, 25, 191-201(2017).

    [23] K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, Y. S. Kivshar. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett., 15, 5369-5374(2015).

    [24] Y. S. Guo, J. Zhou. Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators. Sci. Rep., 5, 8144(2015).

    [25] Y. S. Guo, J. Zhou. Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators. Opt. Express, 22, 27136-27143(2014).

    [26] K. Bi, W. J. Liu, Y. S. Guo, G. Y. Dong, M. Lei. Magnetically tunable broadband transmission through a single small aperture. Sci. Rep., 5, 12489(2015).

    [27] Y. S. Guo, H. Liang, X. J. Hou, X. L. Lv, L. F. Li, J. S. Li, K. Bi, M. Lei, J. Zhou. Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator. Appl. Phys. Lett., 108, 051906(2016).

    [28] Y. S. Guo, J. Zhou, C. W. Lan, K. Bi. Resonance transmission of electromagnetic wave through a thin dielectric rod. Appl. Phys. Lett., 104, 123902(2014).

    [29] J. C. Prangsma, D. van Oosten, R. J. Moerland, L. Kuipers. Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays. New J. Phys., 12, 013005(2010).

    [30] N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, N. I. Zheludev. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 15, 263-271(2016).

    [31] H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, X. Zhang. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging. Nature, 469, 385-388(2011).

    [32] M. W. Klein, C. Enkrich, M. Wegener, S. Linden. Second-harmonic generation from magnetic metamaterials. Science, 313, 502-504(2006).

    [33] M. W. Klein, M. Wegener, N. Feth, S. Linden. Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express, 15, 5238-5247(2007).

    [34] Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, J. V. Moloney. Classical theory for second-harmonic generation from metallic nanoparticles. Phys. Rev. B, 79, 235109(2009).

    [35] C. Ciraci, E. Poutrina, M. Scalora, D. R. Smith. Origin of second-harmonic generation enhancement in optical split-ring resonators. Phys. Rev. B, 85, 201403(2012).

    [36] Y. S. Guo, J. Zhou, C. W. Lan, H. Y. Wu, K. Bi. Mie-resonance-coupled total broadband transmission through a single subwavelength aperture. Appl. Phys. Lett., 104, 204103(2014).

    [37] W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, Q. Li. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ϵ″ metals. Appl. Phys. Lett., 110, 101101(2017).

    Yunsheng Guo, Saiyu Liu, Ke Bi, Ming Lei, Ji Zhou. Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture[J]. Photonics Research, 2018, 6(12): 1102
    Download Citation